

Convergence results for finite element and finite difference approximation of nonlocal fracture models

Prashant K. Jha

Department of Mathematics Louisiana State University

Joint work with **Dr. Robert Lipton**

Overview of the talk

- Nonlinear peridynamic model
- Well-posedness of nonlocal model
- ► A priori convergence: Theory
- > A priori convergence: Numerical results
- Recent and future works

Nonlinear peridynamic model

Let ϵ is the horizon, $B_{\epsilon}(x)$ ball of radius ϵ , and u(x) displacement of material point $x \in D$. In this work, we consider linearized pairwise strain S(y, x; u) given by

$$S(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{u}) = \frac{\boldsymbol{u}(\boldsymbol{y}) - \boldsymbol{u}(\boldsymbol{x})}{|\boldsymbol{y} - \boldsymbol{x}|} \cdot \frac{\boldsymbol{y} - \boldsymbol{x}}{|\boldsymbol{y} - \boldsymbol{x}|}.$$

Suppose $\hat{f}^{\epsilon}(y,x)$ denotes the force applied on x from the neighboring point y. Then total force at x is given by

$$m{f}^{\epsilon}(m{x}) = \int_{B_{\epsilon}(m{x})} \hat{m{f}}^{\epsilon}(m{y},m{x}) dm{y}$$

We consider pairwise force based on smooth and concave potential function $\psi^{\text{1,2}}$

$$\hat{\boldsymbol{f}}^{\epsilon}(\boldsymbol{y}, \boldsymbol{x}) = \frac{1}{\epsilon |B_{\epsilon}(\boldsymbol{0})|} \frac{\partial_{S} \psi(|\boldsymbol{y} - \boldsymbol{x}| S(\boldsymbol{y}, \boldsymbol{x})^{2})}{|\boldsymbol{y} - \boldsymbol{x}|} \frac{\boldsymbol{y} - \boldsymbol{x}}{|\boldsymbol{y} - \boldsymbol{x}|}$$

Equation of motion

Equation of motion

$$\rho \ddot{\boldsymbol{u}}(\boldsymbol{x},t) = \boldsymbol{f}^{\epsilon}(\boldsymbol{x};\boldsymbol{u}(t)) + \boldsymbol{b}(\boldsymbol{x},t), \qquad \forall \boldsymbol{x} \in D, t \in [0,T]$$

Boundary condition

$$\boldsymbol{u}(\boldsymbol{x},t) = \boldsymbol{g}(\boldsymbol{x},t) \qquad \forall \boldsymbol{x} \in D_u, t \in [0,T]$$

$$\boldsymbol{b}(\boldsymbol{x},t) = \boldsymbol{f}_{ext}(\boldsymbol{x},t) \qquad \forall \boldsymbol{x} \in D_f, t \in [0,T]$$

 $D_u, D_f \subset D$ are layer with finite volume (area in 2-d) on which displacement and external force, respectively, are specified. External force is applied in the form of body force.

Initial condition: $u(x,0) = u_0(x), \dot{u}(x,0) = v_0(x)$ for all $x \in D$.

<u>Weak form</u>: Multiplying peridynamic equation by smooth test function \tilde{u} such that $\tilde{u} = 0$ on D_u , and integrating over D, and using nonlocal integration by parts, we get

$$(\rho \ddot{\boldsymbol{u}}(t), \tilde{\boldsymbol{u}}) + a^{\epsilon}(\boldsymbol{u}(t), \tilde{\boldsymbol{u}}) = (\boldsymbol{b}(t), \tilde{\boldsymbol{u}})$$

where

$$a^{\epsilon}(\boldsymbol{u}, \boldsymbol{w}) = \frac{1}{\epsilon |B_{\epsilon}(\boldsymbol{0})|} \int_{D} \left[\int_{B_{\epsilon}(\boldsymbol{x})} \psi'(|\boldsymbol{y} - \boldsymbol{x}| S(\boldsymbol{u})^{2}) |\boldsymbol{y} - \boldsymbol{x}| S(\boldsymbol{u}) S(\boldsymbol{w}) d\boldsymbol{y} \right] d\boldsymbol{x}$$

Well-posedness of nonlinear peridynamic model

- 3
- Using the fact that nonlinear peridynamic force is bounded and Lipschitz continuous with respect to displacement field $u \in L^2_0(D)$, the existence of solutions over any finite time domain [0,T] is shown [1].
- To prove existence of solutions in more regular spaces, we introduce boundary function ω into Peridynamic force. $\omega(x) = 1$ in the interior and smoothly decays to 0 as x approaches boundary ∂D .
- To perform apriori error analysis of finite difference approximation, we consider Hölder space $C_0^{0,\gamma}(D)$, $\gamma\in(0,1]$. In [2] we show existence of solutions in Hölder space $C_0^{0,\gamma}(D)$. In [3] we extend the results to state-based peridynamic models.
- For apriori error analysis of finite element approximation using continuous piecewise linear elements, we consider natural space $H^2(D) \cap H^1_0(D)$. In [4] we show existence of solutions in $H^2(D) \cap H^1_0(D)$.

^[1] R. Lipton (2016) Cohesive dynamics and brittle fracture. Journal of Elasticity, 124(2), pp.143-191.

^[2] P.K. Jha and R. Lipton (2018) Numerical analysis of nonlocal fracture models in Holder space. SIAM Journal on Numerical Analysis, 56(2), pp.906-941.

^[3] P.K. Jha and R. Lipton (2019) Numerical convergence of finite difference approximations for state based peridynamic fracture models. Computer Methods in Applied Mechanics and Engineering, 351(1), 184 – 225.

^[4] P.K. Jha and R. Lipton (2018) Finite element approximation of nonlocal fracture models. arXiv preprint arXiv:1710.07661. **Under review** in Discrete and Continuous Dynamical Systems Series B.

Well-posedness of nonlinear peridynamic model

4

Let W be either $C_0^{0,\gamma}(D)$ or $H^2(D)\cap H_0^1(D)$ space. We assume $\boldsymbol{u}\in W$ is extended by zero outside D. Domain D is assumed to be sufficiently smooth (precise details in [1,2]). Two key steps to show existence:

- lacktriangle Obtain Lipschitz bound on peridynamic force in W.
- Using Lipshitz bound, show local existence of unique solutions. Show that local existence of unique solutions can be repeatedly applied to get global existence of solutions for any time domain (-T,T).

Theorem 1. Existence and uniqueness of solutions over finite time intervals

Let $\mathbf{v}(t) = \dot{\mathbf{u}}(t)$, and $X = W \times W$. For any initial condition $x_0 \in X$, time interval $I_0 = (-T,T)$, and right hand side $\mathbf{b}(t)$ continuous in time for $t \in I_0$ such that $\mathbf{b}(t)$ satisfies $\sup_{t \in I_0} ||\mathbf{b}(t)||_W < \infty$, there is a unique solution $(\mathbf{u}(t), \mathbf{v}(t)) \in C^1(I_0; X)$ of Peridynamic equation of motion with initial condition x_0 . Moreover, $(\mathbf{u}(t), \mathbf{v}(t))$ and $(\dot{\mathbf{u}}(t), \dot{\mathbf{v}}(t))$ are Lipschitz continuous in time for $t \in I_0$.

Finite difference approximation

We approximate peridynamic equation using piecewise constant interpolation and central in time discretization. Let u_i^k denote the discrete displacement at mesh node x_i and time $t^k = k\Delta t$. We consider following piecewise constant function

$$oldsymbol{u}_h^k(oldsymbol{x}) = \sum_{i,oldsymbol{x}_i \in D} oldsymbol{u}_i^k \chi_{U_i}(oldsymbol{x})$$

Discrete problem is

$$rac{oldsymbol{u}_h^{k+1}-2oldsymbol{u}_h^k+oldsymbol{u}_h^{k-1}}{\Delta t^2}=oldsymbol{f}_h^\epsilon(t^k)+oldsymbol{b}_h^k,$$

where

$$oldsymbol{f}_h^{\epsilon}(oldsymbol{x},t^k) = \sum_{i,oldsymbol{x}_i \in D} oldsymbol{f}^{\epsilon}(oldsymbol{x}_i,t^k) \chi_{U_i}(oldsymbol{x}),$$

$$oldsymbol{b}_h(oldsymbol{x},t^k) = \sum_{i,oldsymbol{x}_i \in D} oldsymbol{b}(oldsymbol{x}_i,t^k) \chi_{U_i}(oldsymbol{x})$$

 U_i

Convergence of finite difference approximation

6

Error at time step k is defined as: $E^k = ||\mathbf{u}_h^k - \mathbf{u}(t^k)||$.

Theorem 2. Let $\epsilon > 0$ be fixed. Let (u, v) be the solution of peridynamic equation. We assume $u, v \in C^2([0, T]; C^{0,\gamma}(D; \mathbb{R}^d))$. Then the finite difference scheme is consistent in both time and spatial discretization and converges to the exact solution uniformly in time with respect to the L^2 norm. If we assume the error at the initial step is zero then the error E^k at time t^k is bounded and satisfies

$$\sup_{0 \le k \le T/\Delta t} E^k \le O\left(C_t \Delta t + C_s \frac{h^{\gamma}}{\epsilon^2}\right),\,$$

where constant C_s and C_t are independent of h and Δt . Constants C_t, C_s depend on the ϵ and Hölder norm of the exact solution.

Setting up peridynamic model

- Pairwise potential: $\psi(r) = c(1 \exp[-\beta r^2])$
- Influence function: J(r)=1-r for $0 \le r < 1$ and J(r)=0 for $r \ge 1$
- Critical strain: $S_c({m y},{m x})=rac{\pm ar r}{\sqrt{|{m y}-{m x}|}}$, where ar r is the inflection point of function ψ
- We fix ho=1200 kg/m³, bulk modulus K=25 GPa, critical energy release rate $G_c=500$ J/m $^{-2}$
- Using relation between nonlinear peridynamic model and linear elastic fracture mechanics¹, we find

$$c = 4712.4, \qquad \beta = 1.7533 \times 10^8, \qquad \bar{r} = \frac{1}{\sqrt{2\beta}} = 5.3402 \times 10^{-5}$$

Mode I crack propagation: Setup

- ullet Final time $T=34\,\mu$ s, time step $\Delta t=0.004\,\mu$ s
- Uniform grid on square domain $D=[0,0.1\,\mathrm{m}]^2$

Convergence with respect to mesh size

• Three set of horizons $\epsilon=8,4,2$ mm. For each fixed ϵ , simulations were run with three different meshes of size $h=\epsilon/2,\epsilon/4,\epsilon/8$.

Localization of fracture zone

Finite element approximation

Let $V_h \subset H^1_0(D)$ be given by linear continuous interpolations over tetrahedral or triangular elements \mathcal{T}_h where h denotes the size of finite element mesh. We assume elements are conforming and the mesh is shape regular.

For a continuous function u on \bar{D} , $\mathcal{I}_h(u)$ is the continuous piecewise linear interpolant on \mathcal{T}_h and is given by

$$\mathcal{I}_h(oldsymbol{u})(oldsymbol{x}) = \sum_{T \in \mathcal{T}_h} \left[\sum_{i \in N_T} oldsymbol{u}(oldsymbol{x}_i) \phi_i(oldsymbol{x})
ight].$$

Assuming that the size of each element in triangulation \mathcal{T}_h is bounded by h, we have

$$||\boldsymbol{u} - \mathcal{I}_h(\boldsymbol{u})|| \le ch^2 ||\boldsymbol{u}||_2, \quad \forall \boldsymbol{u} \in H_0^2(D; \mathbb{R}^d).$$

<u>Projection</u>: Let $r_h(u) \in V_h$ is the projection of $u \in H^2(D) \cap H^1_0(D)$ such that

$$||oldsymbol{u}-oldsymbol{r}_h(oldsymbol{u})||=\inf_{ ilde{oldsymbol{u}}\in V_h}||oldsymbol{u}- ilde{oldsymbol{u}}||$$

Central difference time discretization

 $(\boldsymbol{u}_h^k, \boldsymbol{v}_h^k)$ and $(\boldsymbol{u}^k, \boldsymbol{v}^k)$ denote the approximate and the exact solution at k^{th} step. Projection is denoted as $(\boldsymbol{r}_h(\boldsymbol{u}^k), \boldsymbol{r}_h(\boldsymbol{v}^k))$. Approximate initial condition $\boldsymbol{u}_0, \boldsymbol{v}_0$ by their projection $\boldsymbol{r}_h(\boldsymbol{u}_0), \boldsymbol{r}_h(\boldsymbol{v}_0)$ and set $\boldsymbol{u}_h^0 = \boldsymbol{r}_h(\boldsymbol{u}_0), \boldsymbol{v}_h^0 = \boldsymbol{r}_h(\boldsymbol{v}_0)$.

For $k \geq 1$, $(\boldsymbol{u}_h^k, \boldsymbol{v}_h^k)$ satisfies, for all $\tilde{\boldsymbol{u}} \in V_h$,

$$egin{aligned} \left(rac{oldsymbol{u}_h^{k+1}-oldsymbol{u}_h^k}{\Delta t}, ilde{oldsymbol{u}}
ight) &= (oldsymbol{v}_h^{k+1}, ilde{oldsymbol{u}}), \ \left(rac{oldsymbol{v}_h^{k+1}-oldsymbol{v}_h^k}{\Delta t}, ilde{oldsymbol{u}}
ight) &= (oldsymbol{f}^{\epsilon}(oldsymbol{u}_h^k), ilde{oldsymbol{u}}) + (oldsymbol{b}_h^k, ilde{oldsymbol{u}}), \end{aligned}$$

where we denote projection of $b(t^k)$, $r_h(b(t^k))$, as b_h^k . Combining the two equations delivers central difference equation for u_h^k . We have

$$\left(rac{oldsymbol{u}_h^{k+1}-2oldsymbol{u}_h^k+oldsymbol{u}_h^{k-1}}{\Delta t^2}, ilde{oldsymbol{u}}
ight)=(oldsymbol{f}^\epsilon(oldsymbol{u}_h^k), ilde{oldsymbol{u}})+(oldsymbol{b}_h^k, ilde{oldsymbol{u}}), \qquad orall ilde{oldsymbol{u}}\in V_h.$$

Convergence of finite element approximation

13

Error at time step k is defined as: $E^k = ||\mathbf{u}_h^k - \mathbf{u}(t^k)||$.

Theorem 3. Convergence of Central difference approximation

Let (u, v) be the exact solution of peridynamics equation and Let (u_h^k, v_h^k) be the FE approximate solution. If $u, v \in C^2([0, T], H^2(D) \cap H^1_0(D))$, then the scheme is consistent and the error E^k satisfies following bound

$$\sup_{k \le T/\Delta t} E^k = C_t \Delta t + C_s \frac{h^2}{\epsilon^2}$$

where constant C_t and C_s are independent of h and Δt and depends on the horizon and the norm of exact solution. Constant L/ϵ^2 is the Lipschitz constant of peridynamic force in L^2 .

Recent work: Mix mode crack propagation

Material properties are same as in the Mode-I problem. We set

- Horizon $\epsilon=0.5~\mathrm{mm}$
- Mesh size h = 0.125 mm
- Final time $T=140\,\mu s$
- Time step size $\Delta t = 0.004 \,\mu\text{s}$

(b) Damage profile

(d) u_u plot

- [1] R. Lipton, R. Lehoucq, & P.K. Jha (2019) Complex fracture nucleation and evolution with nonlocal elastodynamics. Journal of Peridynamics and Nonlocal Modeling. April 2019.
- [2] M. R. Ayatollahi & M. R. M. Aliha (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 76(11), 1563-1573.

Recent work: Crack-void interaction

Material properties are same as in the Mode-I problem. We set

- Horizon $\epsilon = 0.4$ mm
- Mesh size h = 0.1 mm
- Final time $T=800\,\mu\mathrm{s}$
- Time step size $\Delta t = 0.004 \,\mu \mathrm{s}$

(b) Damage profile

(c) Magnitude of symmetric gradient of displacement

(d) Numerical experiment results using FEM, Boundary element method [2]

[1] P.K. Jha, P. Diehl & R. Lipton. Nodal finite element approximation of nonlocal fracture models. *In preparation*.

[2] S. Dai, C. Augarde, C. Du & D. Chen (2015). A fully automatic polygon scaled boundary finite element method for modelling crack propagation. Engineering Fracture Mechanics, 133, 163-178.

Recent work: Wave reflection effect on crack velocity 6

We consider a softer material with shear modulus G=35.2 kPa, density $\rho=1011$ kg/m³, and critical energy release rate $G_c=20$ J/m⁻². Poisson ratio is fixed to $\mu=0.25$. Domain is $D=[0,0.12\,\mathrm{m}]\times[0,0.03\,\mathrm{m}]$.

- Horizon $\epsilon=0.6$ mm, mesh size h=0.15 mm
- Time T=1.1 s, $\Delta t=2.2\,\mu$ s

Recent work: Wave reflection effect on crack velocity 7

- Max crack length = 0.12 m
- ullet Rayleigh wave speed $c_R=5.502$ m/s

Recent work: J-integral

We consider a material with Young's modulus E=3.24 GPa, density $\rho=1200$ kg/m³, and critical energy release rate $G_c=500$ J/m $^{-2}$. We set

- Horizon $\epsilon=1.25$ mm, mesh size h=0.3125 mm
- ullet Time $T=800\,\mu$ s, $\Delta t=0.016\,\mu$ s
- $f_0 = 1.0 \times 10^{10}$

The energy associated to crack is given by

$$E(t) = \frac{1}{|B_{\epsilon}(\mathbf{0})|} \int_{A^c(t)} \int_{A(t) \cap B_{\epsilon}(\boldsymbol{x})} \partial_S W(S(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{u}(t))) \frac{\boldsymbol{y} - \boldsymbol{x}}{|\boldsymbol{y} - \boldsymbol{x}|} \cdot (\dot{\boldsymbol{u}}(\boldsymbol{x}, t) + \dot{\boldsymbol{u}}(\boldsymbol{y}, t)) d\boldsymbol{y} d\boldsymbol{x}.$$

Here W is the peridynamic pairwise energy density. A(t) is the rectangle domain with crack tip at its center. It is moving with tip. $A^c(t)$ is the complement of A(t).

<u>J-integral</u>: In [1], we propose J-integral $J(t) := \frac{E(t)}{|\boldsymbol{v}|}$

Recent work: Energy into crack

We compute energy into crack using E(t). Theoretically the energy into crack is given by $E_{theory} = |\mathbf{v}|G_c$, where $|\mathbf{v}|$ is the magnitude of crack velocity. In the current example, $|\mathbf{v}| = \mathbf{v}_x$.

Ongoing and future works

- In [1] we show that the classical kinetic relation is embedded in peridynamics and we have $\lim_{\epsilon \to 0} J(t) = G_c$, where J(t) is the nonlocal J-integral (defined in slide 18). In LEFM, the classical kinetic relation for the crack velocity is postulated. In contrast, we obtain the classical kinetic relation from the Peridynamics.
- Open source computational library for nonlocal modeling. This is a joint work with Patrick Diehl (LSU) and Robert Lipton (LSU).
- Study of granular material using nonlinear nonlocal model.

Thank you!