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’ Overview of the talk

> Nonlinear peridynamic model

> Well-posedness of nonlocal model

> A priori convergence: Theory

> A priori convergence: Numerical results

» Recent and future works
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’ Nonlinear peridynamic model !

Let € is the horizon, B.(x) ball of radius ¢, and u(x) displacement of material point
x € D. In this work, we consider linearized pairwise strain S(y, x; u) given by
u(y) —u(xz) y-w

y—=z|  |y—=

S(y,x;u) =
YA oo = lim 1(r)

Suppose }Te(yjaj) denotes the force ap- EEEE e
plied on x from the neighboring point y. @p’(()A

Then total force at x is given by

SN 4

> T
F@=|
B.(z) force A
We consider pairwise force based on smooth
and concave potential function "2 _ﬁgc , ;
5 S S

Py = Os¢(ly —x|S(y,x)°) y—x

| €| Bc(0)] ly — | ly — |

[1]R. Lipton (2014) Dynamic brittle fracture as a small horizon limit of peridynamics. Journal of Elasticity, 117(1) 21-50.
[2] R. Lipton (2016) Cohesive dynamics and brittle fracture. Journal of Elasticity, 124(2), pp.143-191.
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Equation of motion

pu(x,t) = f(x;u(t)) + b(x,t), Ve € D,t € [0,T]
Boundary condition

u(x,t) =g(x,t) Va € D,,te[0,T]

b(x,t) = fop(x,t) Ve Dy tel0,T]

D,,D¢ C D are layer with finite volume (area in 2-d) on which displacement and
external force, respectively, are specified. External force is applied in the form of body
force.

Initial condition: u(x,0) = ug(x), w(x,0) = vo(x) forall x € D.

Weak form: Multiplying peridynamic equation by smooth test function w such that
u = 0on D,, and integrating over D, and using nonlocal integration by parts, we get

(pua(t), w) + a(u(t),u) = (b(t), u)

where
€ _ "(ly — |S(u)?)|ly — x|S(u)S(w T
(uw) = o [ [ [ vy =als(w?ly — slS(stw)iy | o
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’ Well-posedness of nonlinear peridynamic model

® Using the fact that nonlinear peridynamic force is bounded and Lipschitz continuous
with respect to displacement field u € L3(D), the existence of solutions over any finite
time domain [0, T'] is shown [1].

@ To prove existence of solutions in more regular spaces, we introduce boundary func-
tion w into Peridynamic force. w(x) = 1 in the interior and smoothly decays to 0 as «
approaches boundary 0D.

® To perform apriori error analysis of finite difference approximation, we consider Holder
space C;"'(D), v € (0,1]. In [2] we show existence of solutions in Hélder space
CS’”(D). In [3] we extend the results to state-based peridynamic models.

@ For apriori error analysis of finite element approximation using continuous piecewise
linear elements, we consider natural space H?(D) N H} (D). In [4] we show existence
of solutions in H?(D) N H} (D).

[1]R. Lipton (2016) Cohesive dynamics and brittle fracture. Journal of Elasticity, 124(2), pp.143-191.

[2] P.K.Jha and R. Lipton (2018) Numerical analysis of nonlocal fracture models in Holder space. SIAM Journal on Numerical Analysis, 56(2), pp.906-941.
[3] P.K. Jha and R. Lipton (2019) Numerical convergence of finite difference approximations for state based peridynamic fracture models. Computer
Methods in Applied Mechanics and Engineering, 351(1), 184 - 225.

[4] P.K. Jha and R. Lipton (2018) Finite element approximation of nonlocal fracture models. arXiv preprint arXiv:1710.07661. Under review in Discrete

and Continuous Dynamical Systems Series B.
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’ Well-posedness of nonlinear peridynamic model  “

Let W be either " (D) or H?(D) N H (D) space. We assume u € W is extended
by zero outside D. Domain D is assumed to be sufficiently smooth (precise details in
[1,2]). Two key steps to show existence:

® Obtain Lipschitz bound on peridynamic force in .

@ Using Lipshitz bound, show local existence of unique solutions. Show that local
existence of unique solutions can be repeatedly applied to get global existence
of solutions for any time domain (=7, T).

Theorem 1. Existence and uniqueness of solutions over finite time intervals

Let v(t) = u(t), and X = W x W. For any initial condition xo € X, time interval
Iy = (=T,T), and right hand side b(t) continuous in time for t € I, such that b(t) satisfies
sup,cy, ||b(t)||w < oo, there is a unique solution (u(t),v(t)) € C'(Iy; X) of Peridynamic
equation of motion with initial condition xo. Moreover, (u(t),v(t)) and (u(t),v(t)) are
Lipschitz continuous in time for t € 1.

[1]1 P.K. Jha and R. Lipton (2018) Numerical analysis of nonlocal fracture models in Holder space. SIAM Journal on Numerical Analysis, 56(2), pp.906-941.
[2] P.K. Jha and R. Lipton (2019) Numerical convergence of finite difference approximations for state based peridynamic fracture models. Computer

Methods in Applied Mechanics and Engineering, 351(1), 184 - 225.
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’ Finite difference approximation .

We approximate peridynamic equation using piecewise constant interpolation and

central in time discretization. Let u} denote the discrete displacement at mesh node
x; and time t* = kEAt. We consider following piecewise constant function

Z ’u’fi’CXUq; (w)

1, ;€D —

A T
™
d
/ =\
. ) ”i B \ﬁ
Discrete problem is | \\ }
H l ?J
kTl k—1 \I ;
w, " — 2up + — () + b \
AtQ T h h» \\ }?.r
\ ] U,
where /
Y €£T;
k k
Fileth)y = Y f(wi, t*)xu, (@), (a) (b)
1, &, €D

Bz, th) = Z b(x;, t")xu, ()

t,x; €D
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’ Convergence of finite difference approximation

Error at time step k is defined as: E* = ||uf — u(t%)]].

Theorem 2. Let ¢ > 0 be fixed. Let (u,v) be the solution of peridynamic equation. We
assume u,v € C?([0,T]; C%7(D;R?)). Then the finite difference scheme is consistent in
both time and spatial discretization and converges to the exact solution uniformly in time
with respect to the L? norm. If we assume the error at the initial step is zero then the error
E* at time t* is bounded and satisfies

h”
sup EF <O (CtAt + 08—2) ,
0<k<T/At €

where constant C's and C are independent of h and At. Constants C;, Cs depend on the e
and Hélder norm of the exact solution.

[1]1 P.K.Jha and R. Lipton (2018) Numerical analysis of nonlocal fracture models in Holder space. SIAM Journal on Numerical Analysis, 56(2), pp.906-941.
[2] P.K. Jha and R. Lipton (2019) Numerical convergence of finite difference approximations for state based peridynamic fracture models. Computer
Methods in Applied Mechanics and Engineering, 351(1), 184 - 225.
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’ Setting up peridynamic model /

® Pairwise potential: v (r) = ¢(1 — exp[—/r?])

® Influence function: J(r) =1—rfor0<r<landJ(r)=0forr>1
+7

VY —

® We fix p = 1200 kg/m?, bulk modulus K = 25 GPa, critical energy release
rate G, = 500 J/m~—2

@ Critical strain: S.(y,x) =

, Where 7 is the inflection point of function v

® Using relation between nonlinear peridynamic model and linear elastic fracture
mechanics', we find

1
c=47124, B=1.7533 x10°%°, F=-— =5.3402x10°
V20

[1] R. Lipton (2016) Cohesive dynamics and brittle fracture. Journal of Elasticity, 124(2), pp.143-191.
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. Mode | crack propagation: Setup ;

® Final time T' = 34 us, time step At = 0.004 us

® Uniform grid on square domain D = [0,0.1 m]?

1 u, =0 €
- 0.1 R
0.1m = = >
0.02m
B i
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’ Convergence with respect to mesh size

® Three set of horizons e = 8,4, 2 mm. For each fixed ¢, simulations were run with three
different meshes of size h = ¢/2,¢/4, ¢/8.

—— e=8mm

- e=4dmm

—— e=2mm

1.8
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2
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] 10 15 20 25 30 35
Time (ps)
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’ Localization of fracture zone

\ |
0.0e+00 2.3 5.0e+00

S \

|
0.0e+00 23 5.0e+00
Damage

e =8 mMmm

e=4mm
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’ Finite element approximation H

Let V}, C H} (D) be given by linear continuous interpolations over tetrahedral or tri-
angular elements 7, where h denotes the size of finite element mesh. We assume
elements are conforming and the mesh is shape regular.

For a continuous function u on D, T, (u) is the continuous piecewise linear interpolant
on 7, and is given by

Tn(u)(z) = ) [S: U(ivi)@:(w)] :

TeTr LieNT

Assuming that the size of each element in triangulation 7}, is bounded by h, we have

lu — Zp (w)|| < ch?||u|2, Vu € HZ2(D;RY).

Projection: Let 7, (u) € V}, is the projection of u € H?(D) N Hj (D) such that

B i e — g
lu—ra(u)ll = inf fju—al
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’ Central difference time discretization 12

(uf,v¥) and (u*, v*) denote the approximate and the exact solution at k™ step. Pro-

jection is denoted as (rj,(u”),r,(v*)). Approximate initial condition wug, vy by their
projection 7y (ug), 7 (vp) and set u) = 7y (ug), v) = 7 (Vo).

For k > 1, (uf,v%) satisfies, for all u € V},
k1 k
u — U
h ho- k41 -
( At ,u> = (v, ),

,vl;i—i_l_vz ~ | er..k\y ~ k ~
At » W _(-f (Uh),U)—I—(bh,U),

where we denote projection of b(t*), r1,(b(t*)), as by. Combining the two equations
delivers central difference equation for uf. We have

k+1 k k—1
— 2
<Uh Y “’) = (F(u), @)+ (0, @), VaeVi
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’ Convergence of finite element approximation =

Error at time step k is defined as: E* = [|[uf — u(t%)]].

Theorem 3. Convergence of Central difference approximation

Let (u,v) be the exact solution of peridynamics equation and Let (u?,v%) be the FE ap-
proximate solution. If u,v € C*([0,T], H*(D) N Ha (D)), then the scheme is consistent
and the error E¥ satisfies following bound

h2
sup EF = C,At+ C’S—2
k<T/At ¢

where constant C; and C's are independent of h and At and depends on the horizon and
the norm of exact solution. Constant L/e? is the Lipschitz constant of peridynamic force in
L.

[1]1 P.K.Jha and R. Lipton (2018) Finite element approximation of nonlocal fracture models. arXiv preprint arXiv:1710.07661. Under review in Discrete
and Continuous Dynamical Systems Series B.



Valencia
July 17, 2019

LOUISIANA STATE UNIVERSITY

‘ Recent work: Mix mode crack propagation L

Material properties are same as in the Mode-
| problem. We set 40¢

e Horizon e = 0.5 mm

fo=F,=1t5.0x 1013 N — 3.0e+00

2.5

-2
I— 1.5

e Meshsize h = 0.125 mm 0.1m 6 ="725°
e Finaltime 7" = 140 us %M

1

— 0.5

e Time step size At = 0.004 us fo=f,=—15.0x 10N

40¢

0.0e+00

40¢ 0.1m

(a) Setup (b) Damage profile

(e) Experiment result [2] (€) u, plot (d) u, plot

[1] R. Lipton, R. Lehoucq, & P.K. Jha (2019) Complex fracture nucleation and evolution with nonlocal elastodynamics. Journal of Peridynamics and
Nonlocal Modeling. April 2019.

[2] M. R. Ayatollahi & M. R. M. Aliha (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture
Mechanics, 76(11), 1563-1573.
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’ Recent work: Crack-void interaction

Material properties are same as in the Mode-| problem. We set

e Horizone = 0.4 mm
e Meshsize h =0.1 mm
e Final time T = 800 us

e Time step size At = 0.004 us

Strain_Tensor Magnitude

(b) Damage profile

(c) Magnitude of symmetric gradient

of displacement

(a) Setup (units in mm)
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€
u; =0
Uy = tv

- Ol [32)
s This paper

o— Bouchard [44)

s~ Rashid [43)

(d) Numerical experiment results

using FEM, Boundary element
method [2]

[1] P.K. Jha, P. Diehl & R. Lipton. Nodal finite element approximation of nonlocal fracture models. In preparation.

[2] S. Dai,C. Augarde, C. Du & D. Chen (2015). A fully automatic polygon scaled boundary finite element method for modelling crack propagation.

Engineering Fracture Mechanics, 133, 163-178.
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‘ Recent work: Wave reflection effect on crack velocity ©

We consider a softer material with shear modulus G = 35.2 kPa, density p = 1011

kg/m?3, and critical energy release rate G. = 20)/m~2. Poisson ratio is fixed to ;1 = 0.25.
Domainis D = [0,0.12m] x [0,0.03 m].

e Horizon e = 0.6 mm, mesh size h = 0.15 mm

e TimeT =1.1s, At =2.2us

uy(x,t) = 0.0015755
L=0.12m
=3 >
<> W =0.03m
[=3mm
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’ Recent work: Wave reflection effect on crack velocity ’

e Max crack length=0.12 m

e Rayleigh wave speed cr = 5.502 m/s

Crack length vs crack velocity

(.02 0.04 0.06 0.08 0.10
[ (m)
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’ Recent work: J-integral

We consider a material with Young's modulus F = 3.24 GPa, den-
sity p = 1200 kg/m?, and critical energy release rate G. = 500
J/m~2. We set

e Horizon e = 1.25 mm, mesh size h = 0.3125 mm
e TimeT =800us, At =0.016 us
o fy=1.0x10%

The energy associated to crack is given by

B(t) = —

ly — x|

Here W is the peridynamic pairwise energy density. A(t)
is the rectangle domain with crack tip at its center. It is
moving with tip. A¢(t) is the complement of A(¢).

E(t
J-integral: In [1], we propose J-integral J(t) := %

) U e (' x.
|Be(0)y/Ac(t) /A(the(m) IsW(S(y, z;u(t))) ((x, 1) + u(y,t))dyd

Valencia
July 17, 2019
18
Te
e_ftj
b, ="
W=01m
L=03m
y=0
[ = 0.025 m
€ — fot
by_ 60W
}€

[1]1 P.K.Jha & R. Lipton (2019). The relation of nonlocal cohesive models to classic dynamic fracture models: The single edge notch in tension. In

preparation.
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. Recent work: Energy into crack L

We compute energy into crack using E(t). Theoretically the energy into crack is given
bY Eiheory = |V|Gc, Where |v| is the magnitude of crack velocity. In the current exam-
ple, |v| = v,.

Energy into crack

450000
400000
350000

= 300000
£4

250000

cr

200000

150000

—&— Numerical F(f)

100000 +—  Theory Eipeorylt) = v:Ge

0.0080  0.0085  0.0090 0.0095 0.0100  0.0105
Time (s]
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’ Ongoing and future works 20

® In [1] we show that the classical kinetic relation is embedded in peridynamics and we
have lim._o J(t) = G., where J(t) is the nonlocal J-integral (defined in slide 18). In
LEFM, the classical kinetic relation for the crack velocity is postulated. In contrast, we
obtain the classical kinetic relation from the Peridynamics.

® Open source computational library for nonlocal modeling. This is a joint work with
Patrick Diehl (LSU) and Robert Lipton (LSU).

® Study of granular material using nonlinear nonlocal model.

[1]1 P.K. Jha & R. Lipton (2019). The relation of nonlocal cohesive models to classic dynamic fracture models: The single edge notch in tension. In

preparation.
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Thank you!
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