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Introduction 2

Let D be the material domain, D. be nonlocal boundary, and u be the displace-
ment field.

Let x denote the material point and y(x) = x 4+ u(x) denote the deformed
position.

Strain between two material point x and y is given by

S(y,x;u) = ly +u(y) — Ty—_ux(lx)\ — |y — x|

Assuming that displacement is small compared to the size of material, we lin-
earize S and get

u(y) —u(x) y-x
y—x ly—x]

S(y,x;u) =
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Neighborhood of material point 3

Consider a material point x. We introduce a length scale ¢ which is called size
of horizon. This controls the extent of nonlocal interaction in the material.

Hydrostatic strain (average strain) at material point x is expressed as

0(x;u) = 0] J(ly = x[)S(y, x; u)ly — x|dy

J(ly — x|) is the influnece function. We assume J¢(ly — x|) = J(|ly — x|/€) and B (ZL‘)
function J satisfies 0 < J(r) < M for r < 1 and J(r) =0 for r > 1. ¢

Generic form of force at x in peridynamic model is given by

1 e

FE(x:u) = f :
(x; u) B.00] /oo (y, x; u)dy

i depends on choice of € and includes force due to pairwise interaction and force
due to volume deformation.
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&8 Example of pairwise force 4

@ Example: Prototype Microelastic Brittle (PMB) material Silling & Askari
(2005), Bobaru & Hu (2012)

F(y,x, 1) = (S (y, x; u))a Y XD

Sy, %) T —
¢ |y —x| force
where ((S) = 1if |S| <S¢ and p(S) = 0 when |S| > S..

—Sc |
| — S

@ 1fuc C3(D;RY), and sup,.p |V3u(x)| < oo then

_ _ 2
sup [fé(x;u)—V-CEu(x)| = O(¢?), C=
IEDI (x; u) (x)| = O(€”) 51(0)]

es = £/]€| and the strain tensor is Eu(x) = (Vu(x) + Vu' (x))/2.

/ T (€] ec Cee e Deg|E|dE.
B1(0)

Silling & Askari (2005): A meshfree method based on the peridynamic model of solid mechanics. Computers and Structures, vol 83, pp 1526-1535.
Bobaru & Hu (2012): The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials.
Int. J. of Fracture, vol 176(2), pp 215-222.



Baton Rouge
October 6, 2018

5

@ We consider peridynamic force of the form Lipton (2014)

c 2 J(ly =x|) y — X c-
F (x;u) = vy — x|S d
(X l,l) ‘Be<0)| B.(x) € /—’y—X‘ ¢ ( |y X| )\y—x\ y

Potential function 9 is multiwell function with one well at

zero and other at =+ oo /

@ Critical strain: ST (y,x) = |ry+_x|’ ST (y,x) = —— Fig: Profile of 1

@® Example: ¢(r) = c(1 — exp[—3r?]) - T

c, 0 are determined from elastic and fracture properties of material

Fig: Profile of 1/

Lipton (2014): Dynamic brittle fracture as a small horizon limit of peridynamics. Journal of Elasticity, vol 117(1).
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State-based peridynamic force

@ We consider peridynamic force of the form Lipton et al (2018)

! Qjer’__xL) / . / . y—X
BUO) Jpp @ WO g O0cu)) i dy

Fe(x;u) =
() ly — x|

Potential function g can either be multiwell function, similar to v, or it can be
quadratic function giving linear force for hydrostatic strain 6

@ Example: In this work we consider g(r) = Cr?/2

C is determined from elastic properties of material
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Lipton, Said, & Jha (2018): Dynamic brittle fracture from nonlocal double-well potentials: A state-based model.
Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1-27.



Baton Rouge

ﬂLSIJ @ October 6, 2018

LOUISIANA STATE UNIVERSITY

il
I

am Peridynamic energy and equation of motion 7

® Pairwise energy density

WE(S(y, x;u(t))) = J(ly — ><|)Ely 1_ o b(V]y —x[S(y, x;u(?)))

® State-based energy density Ve(4(x; u(t))) = 2 (0(x;u(?)))

62
@® Total peridynamic energy

€ _ 1 — X € X:u X “(B(x;u X
D) = gy o Y X SO uw) dvax [ Vo uw)) e

D

® Lagrangian L(u,u,t) = §||u||2L2(D;Rd) — PD*(u) —|—/ b - udx
D

® Applying the principal of least action gives the nonlocal dynamics
pu(x,t) = F°(x,t) + b(x,t), for x € D

® Initial condition u(x,0) = ug(x), u(x,0) = vo(x)

® Boundary condition u(x,t) = 0 for x € D,

@ For b € C}([0, T]; L>°(D;RY)) and initial data ug,vo € L(D;RY), solution exist
in C2([0, T]; L>°(D;RY)) Lipton et al (2018)

Lipton, Said, and Jha (2018): Dynamic brittle fracture from nonlocal double-well potentials: A state-based model.
Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1-27.
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Finite difference approximation 8

Approximate peridynamic equation using piecewise constant interpolation and
central in time discretization. Let uik denote the discrete displacement at mesh
node x; and time tk = kAt. We consider following piecewise constant function

—
e

/#" 'I‘-.‘.h
Z u’];XUi (X) / ) ]
i,XiED T '_\ D
Discrete problem is / B \1».
\
k+1 . 2u _|_ u
k k h
Atg — Fh(t ) + bha \ - \
\\L
here \\ A
W
Fr(x, t) = > F(xi,t)xu,(x), \ y | o
i,x €D aas >/ T
= b(x;, t*)yu. (X
Z ( [ )XU.( ) (a) (b)
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A priori convergence

@ Well-posedness of solutions in Holder space C%7(D;RY) and existence of solu-

tions in C2([0, T]; C%7(D;RY)) is shown in Jha & Lipton (2018a)

EX o= [Jug — u(t)[] + vy — v(t")]]

Theorem 1. Let € > 0 be fixed. Let (u,v) be the solution of peridynamic
equation. We assume u,v € C2([0,T]; CO7(D;RY)). Then the finite difference
scheme s consistent in both time and spatial discretization and converges to
the exact solution uniformly in time with respect to the L?> norm. If we assume
the error at the initial step is zero then the error EX at time t* is bounded and
satisfies

hY
sup EXx <O (CtAt + Cs—2> :
0<k<T/At €

where constant Cs and C; are independent of h and At and Cs depends on the
Hélder norm of the solution and C; depends on the L2 norms of time derivatives
of the solution.
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Jha & Lipton (2018a): Numerical convergence of finite difference approximations for state based peridynamic fracture models.
Currently under review in CMAME. Arxiv: https://arxiv.org/abs/1805.00296
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Numerical experiments: Material properties 10

@ Pairwise potential: 1(r) = c(1 — exp[—/r?])

@ State-based potential: g(r) = Cr?/2

® Influence function: J(r) =1 —rfor0 <r<1land J(r)=0forr>1
+r

V1Y — x|

@ Critical strain: Sc(y,x) =

Parameters \ Poisson’s ratio v =0.22 v = 0.245
c 4712.4 4712.4
C —1.0623 x 1012 | —1.7349 x 10!
5 1.7533 x 108 1.5647 x 108
T 5.3402 x 10—° 5.6529 x 107°

Table 1: Peridynamic material parameters assuming bulk modulus K = 25 GPa
and critical energy release rate G, = 500J/m™2. Density is p = 1200 kg/m>.
Relation between peridynamic parameters and elastic constant and G is estab-
lished in Lipton et al (2018).

Lipton, Said, & Jha (2018): Dynamic brittle fracture from nonlocal double-well potentials: A state-based model.
Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1-27.
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® Poisson’s ratio: v = 0.245

® Final time T = 34us, time step At = 0.004us

@ Uniform grid on square domain D = [0, 0.1 m]?

0.1m

0.1m

Mode I crack propagation: Setup

11

0.02m

o |
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® Horizon € = 4 mm, mesh size h =1 mm

® To measure the extent of damage at material point x we consider function Z(x)

given by : )
S(y, x;u
7(x) — RAt Akt R/
(X) yEﬁggghD Sc

1 -

05—
0.0e+00 —

s ﬁﬁ‘u‘

?
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® We define the crack zone as set of material points which have Z > 1. For a
crack of length |, the Griffith’s fracture energy (G.E.) will be G.E. = G. x |. The
peridynamic fracture energy (P.E.) is given by

1 €

PE — /XED, ledujdA (x) |y T X|W (S(y7x7 U)) dy] dX,
Z(x)>1 €

where W¢(S(y, x,u)) is the bond-based potential.

—— DPE
G.E.

4
27.5
25.0 X
a3
—~ e
=225 5] &
- U
L
= Il
Z20.0 / T
H / =i
17.5 S £
15.0 // <1
12.5 /'/'
) (} - . - -
0.03 0.04 0.05 0.06 25 30 35 40 45

Length (m) Time (@ s)
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® For each horizon in 8,4, 2, 1 mm, we obtain numerical results for three mesh sizes
h=¢/2,¢/4,¢/8 and compute the rate of convergence

2.0

L* rate o
e
'S
/
/
l'llllll
N

1.0 4

—e— e =8mm
< e=4mm

—— e=2mm

—s— e=1mm

10 15 20 25 30 35
Time (pus)

on
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® Poisson’s ratio: v = 0.22
® Final time T = 350us, time step At = 0.0014us
@ Uniform grid on rectangle domain D = [0,0.25m] x [0, 0.05 m]
i 0
Applied force at time ¢
f(x)
fma:c X t
|
0.05m | 0.05m
0.05m
‘uy:: — ‘uy::
v 0.015m Y
i s DLl B

0.25m

2018

15
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t=130pus t=180pus
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16

14

12

Energy (J)

10

0.040  0.045  0.050  0.055  0.060  0.065

Length (m)
0.015 0.020 0.025 0.030
Length (m)
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Finite element approximation 18

Let V,, is given by linear continuous interpolations over tetrahedral or triangular
elements 7, where h denotes the size of finite element mesh. Here we assume
the elements are conforming and the finite element mesh is shape regular and
V}, C H3(D; RY).

For a continuous function u on D, Zy(u) is the continuous piecewise linear in-
terpolant on 7. It is given by

In(w)| =Z7(u) VT €Ty,

T

where Z1(u) is the local interpolant defined over finite element T and is given

b
’ Zux,

Here n is the number of vertlces in an element T, x; is the position of vertex i,
and ¢; is the linear interpolant associated to vertex i.

Let r,(u) denote the projection of u € H3(D;RY) on V;,. For the L2 norm it is
defined as ¢
Ju—rn(u)l| = inf [ju—dl.
and satisfies

(rp(u),0) = (u, ), Ya € v,
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(uf,vf) and (u®,v*) denote the approximate and the exact solution at k' step.

Projection is denoted as (rp(u), rp(v*)). Approximate initial condition ug, vo by
their projection ry,(up), rh(vo) and set u® = r,(ug), v2 = ry(vo).

For k > 1, (uf, vf) satisfies, for all & € Vj,

k-|—1 uk
h h ~ k+1 =~
At ,U ( h ,U),

k—l—l k

( h — "h,ﬁ> = (F(t"), @) + (by, @i),

where we denote projection of b(t), r,(b(t¥)), as by. Combining the two equa-
tions delivers central difference equation for uﬁ. We have

k+1_2u +u ) e ) ) ~
< Atg ’ > = (F (tk)’“) + (bp, 1), Vi € V.

For k = 0, we have Vu € V,

jontd

1 0
up—uy L\ 1o 19 1 o .
(M) = S+ o (0.8 + 560,
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A priori convergence 20

@ Well-posedness of solutions in H?(D;RY) N H3(D;RY) space and existence of
C2([0, T]; H?(D; RY) N H(D;RY)) is shown in Jha & Lipton (2018b)

@ £ = luf — ut)[[ + [Ivy — v(tY)]]

Theorem 2. Let € > 0 be fixred. Let (u,v) be the solution of peridynamic
equation. We assume u,v € C2([0,T];H?(D;RY) N H3(D;RY)). Then the finite
difference scheme is consistent in both time and spatial discretization and con-
verges to the exact solution uniformly in time with respect to the L? norm. If
we assume the error at the initial step is zero then the error EX at time t¥ is
bounded and satisfies

h2
sup E*<O (CtAt + Cs_2> ;
0<k<T/At €

where constant Cs and C; are independent of h and At and Cs depends on the

H? norm of the solution and C; depends on the L% norms of time derivatives of
the solution.

Jha & Lipton (2018b): Finite element convergence for state-based peridynamic fracture models. Currently under review in
Communications in Applied Mathematics and Computation (CAMC).
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® Poisson’s ratio: v = 0.245

® Final time T =40us, time step At = 0.004us

@ Uniform grid on square domain D = [0, 0.1 m]?

0.1m

0.1m

Mode I crack propagation: Setup

0.02m

o |

21
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® Horizon € = 8 mm, mesh size h =2 mm

® To measure the extent of damage at material point x we consider function Z(x)

given by : )
S(y, x;u
(X) yeﬁ?%§hD Sc

5.0e+00 —
45—

4—

3.5—

— 5.00+00
—45
—4
—35
3
25 N
p)
1.5
L

N 2.5

— 0.5
— 0.0e+00

t=30us t=40pus
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Mode I crack propagation: Fracture energy 23

4.0

- % 100
o
o
[

G.E.-PE
G.E
oo
o

/_—"‘
L‘.‘.‘.""""'----
=

-

—
I
P—
--.____‘_“‘“

\"
2. \ 7/ N/

Absolute error
po
L~
—

| A A I |
0.025 0.030 0.035 0.040 0.045 o 925 S 30 R 35 R 10
Length (m) Time (p s)
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® For each 8 mm and 4 mm horizon, we obtain numerical results for three mesh
sizes h = 2,1,0.5mm and compute the rate of convergence
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e Numerical analysis of state-based peridynamics model.
e Well-posedness of evolutions in appropriate spaces for error estimates.
e Implementation of finite difference and finite element approximation.

e Good agreement between a priori rate and numerical convergence rate for
both finite difference and finite element approximation.

e Peridynamic fracture energy is shown to be close to Griffith’s fracture
energy for mode I crack propagation.
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e Comparison between peridynamics model (in Quasistatic setting) and
phase field models.

e Coupling of local and nonlocal models to reduce computational time and
memory consumption.

e 3-d implementation of peridynamic code.



Baton Rouge

ﬂiLSu @ October 6, 2018

LOUISIANA STATE UNIVERSITY

Thank you!
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