

Convergence results for finite element and finite difference approximation of nonlocal fracture models

Prashant K. Jha

<u>prashant.j16o@gmail.com</u> <u>jha@math.lsu.edu</u>

Joint work with

Dr. Robert Lipton

Funded by Army Research Office

Outline of talk

- Peridynamic: Introduction
- Finite difference approximation and results
- Finite element approximation and results
- Summary and future works

Introduction

Let D be the material domain, D_c be nonlocal boundary, and \boldsymbol{u} be the displacement field.

Let \mathbf{x} denote the material point and $\chi(\mathbf{x}) = \mathbf{x} + \mathbf{u}(\mathbf{x})$ denote the deformed position.

Strain between two material point **x** and **y** is given by

$$S(\mathbf{y}, \mathbf{x}; \mathbf{u}) = \frac{|\mathbf{y} + \mathbf{u}(\mathbf{y}) - \mathbf{x} - \mathbf{u}(\mathbf{x})| - |\mathbf{y} - \mathbf{x}|}{|\mathbf{y} - \mathbf{x}|}$$

Assuming that displacement is small compared to the size of material, we linearize S and get

$$S(\mathbf{y}, \mathbf{x}; \mathbf{u}) = \frac{\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x})}{|\mathbf{y} - \mathbf{x}|} \cdot \frac{\mathbf{y} - \mathbf{x}}{|\mathbf{y} - \mathbf{x}|}$$

Neighborhood of material point

3

Consider a material point \mathbf{x} . We introduce a length scale ϵ which is called size of horizon. This controls the extent of nonlocal interaction in the material.

Hydrostatic strain (average strain) at material point \mathbf{x} is expressed as

$$\theta(\mathbf{x};\mathbf{u}) = \frac{1}{|\mathsf{B}_{\epsilon}(\mathbf{0})|} \int_{\mathsf{B}_{\epsilon}(\mathbf{x})} \mathsf{J}^{\epsilon}(|\mathbf{y}-\mathbf{x}|) \mathsf{S}(\mathbf{y},\mathbf{x};\mathbf{u}) |\mathbf{y}-\mathbf{x}| \mathsf{d}\mathbf{y}$$

 $J^{\epsilon}(|\mathbf{y}-\mathbf{x}|)$ is the influnece function. We assume $J^{\epsilon}(|\mathbf{y}-\mathbf{x}|)=J(|\mathbf{y}-\mathbf{x}|/\epsilon)$ and function J satisfies $0\leq J(r)\leq M$ for r<1 and J(r)=0 for $r\geq 1$.

 $B_{\epsilon}(oldsymbol{x})$

Generic form of force at **x** in peridynamic model is given by

$$\mathbf{F}^{\epsilon}(\mathbf{x}; \mathbf{u}) = rac{1}{|\mathsf{B}_{\epsilon}(\mathbf{x})|} \int_{\mathsf{B}_{\epsilon}(\mathbf{x})} \hat{\mathbf{f}}^{\epsilon}(\mathbf{y}, \mathbf{x}; \mathbf{u}) \mathsf{d}\mathbf{y}$$

 $\hat{\mathbf{f}}^{\epsilon}$ depends on choice of ϵ and includes force due to pairwise interaction and force due to volume deformation.

Example of pairwise force

4

Example: Prototype Microelastic Brittle (PMB) material Silling & Askari (2005), Bobaru & Hu (2012)

$$\hat{\mathbf{f}}^{\epsilon}(\mathbf{y}, \mathbf{x}, \mathbf{u}) = \mu(S(\mathbf{y}, \mathbf{x}; \mathbf{u})) 4 \frac{J^{\epsilon}(|\mathbf{y} - \mathbf{x}|)}{\epsilon} S(\mathbf{y}, \mathbf{x}; \mathbf{u}) \frac{\mathbf{y} - \mathbf{x}}{|\mathbf{y} - \mathbf{x}|}$$

where $\mu(S) = 1$ if $|S| < S_c$ and $\mu(S) = 0$ when $|S| \ge S_c$.

If $\mathbf{u} \in C^3(D; \mathbb{R}^d)$, and $\sup_{\mathbf{x} \in D} |\nabla^3 \mathbf{u}(\mathbf{x})| < \infty$ then

$$\sup_{\boldsymbol{x}\in D}|\mathbf{f}^{\epsilon}(\mathbf{x};\mathbf{u})-\boldsymbol{\nabla}\cdot\bar{\mathbb{C}}\mathcal{E}\mathbf{u}(\mathbf{x})|=O(\epsilon^{2}),\quad \bar{\mathbb{C}}=\frac{2}{|B_{1}(\mathbf{0})|}\int_{B_{1}(\mathbf{0})}J(|\boldsymbol{\xi}|)\mathbf{e}_{\boldsymbol{\xi}}\otimes\mathbf{e}_{\boldsymbol{\xi}}\otimes\mathbf{e}_{\boldsymbol{\xi}}\otimes\mathbf{e}_{\boldsymbol{\xi}}|\boldsymbol{\xi}|d\boldsymbol{\xi},$$

 $\mathbf{e}_{\boldsymbol{\xi}} = \boldsymbol{\xi}/|\boldsymbol{\xi}|$ and the strain tensor is $\mathcal{E}\mathbf{u}(\mathbf{x}) = (\nabla\mathbf{u}(\mathbf{x}) + \nabla\mathbf{u}^{\mathsf{T}}(\mathbf{x}))/2$.

Regularized pairwise force

5

• We consider peridynamic force of the form **Lipton** (2014)

$$\mathbf{F}^{\epsilon}(\mathbf{x};\mathbf{u}) = \frac{2}{|B_{\epsilon}(\mathbf{0})|} \int_{B_{\epsilon}(\mathbf{x})} \frac{J^{\epsilon}(|\mathbf{y}-\mathbf{x}|)}{\epsilon \sqrt{|\mathbf{y}-\mathbf{x}|}} \psi'(\sqrt{|\mathbf{y}-\mathbf{x}|}S) \frac{\mathbf{y}-\mathbf{x}}{|\mathbf{y}-\mathbf{x}|} d\mathbf{y}$$

Potential function ψ is multiwell function with one well at zero and other at $\pm \infty$

Fig: Profile of ψ

 c, β are determined from elastic and fracture properties of material

$$\mathsf{r}^+ = -\mathsf{r}^- = \tfrac{1}{\sqrt{2\beta}}$$

Fig: Profile of ψ'

State-based peridynamic force

6

• We consider peridynamic force of the form Lipton et al (2018)

$$\mathbf{F}^{\epsilon}(\mathbf{x}; \mathbf{u}) = \frac{1}{|B_{\epsilon}(\mathbf{0})|} \int_{B_{\epsilon}(\mathbf{x})} \frac{J^{\epsilon}(|\mathbf{y} - \mathbf{x}|)}{\epsilon^{2}} (g'(\theta(\mathbf{y}; \mathbf{u})) + g'(\theta(\mathbf{x}; \mathbf{u}))) \frac{\mathbf{y} - \mathbf{x}}{|\mathbf{y} - \mathbf{x}|} d\mathbf{y}$$

Potential function g can either be multiwell function, similar to ψ , or it can be quadratic function giving linear force for hydrostatic strain θ

- Example: In this work we consider $g(r) = \overline{C}r^2/2$
 - $\bar{\mathsf{C}}$ is determined from elastic properties of material

Peridynamic energy and equation of motion

7

Pairwise energy density

$$\mathcal{W}^{\epsilon}(S(\mathbf{y},\mathbf{x};\mathbf{u}(t))) = J^{\epsilon}(|\mathbf{y}-\mathbf{x}|) \frac{1}{\epsilon|\mathbf{y}-\mathbf{x}|} \psi(\sqrt{|\mathbf{y}-\mathbf{x}|}S(\mathbf{y},\mathbf{x};\mathbf{u}(t)))$$

- State-based energy density $\mathcal{V}^{\epsilon}(\theta(\mathbf{x}; \mathbf{u}(t))) = \frac{g(\theta(\mathbf{x}; \mathbf{u}(t)))}{\epsilon^2}$
- Total peridynamic energy

$$\mathsf{PD}^{\epsilon}(\mathbf{u}) = \frac{1}{|\mathsf{B}_{\epsilon}(\mathbf{0})|} \int_{\mathsf{D}} \int_{\mathsf{B}_{\epsilon}(\mathbf{x})} |\mathbf{y} - \mathbf{x}| \mathcal{W}^{\epsilon}(\mathsf{S}(\mathbf{y}, \mathbf{x}; \mathbf{u}(\mathsf{t}))) \, \mathrm{d}\mathbf{y} \mathrm{d}\mathbf{x} + \int_{\mathsf{D}} \mathcal{V}^{\epsilon}(\theta(\mathbf{x}; \mathbf{u}(\mathsf{t}))) \, \mathrm{d}\mathbf{x}$$

- Lagrangian $L(\mathbf{u}, \dot{\mathbf{u}}, t) = \frac{\rho}{2} ||\dot{\mathbf{u}}||_{L^2(D; \mathbb{R}^d)}^2 PD^{\epsilon}(\mathbf{u}) + \int_D \mathbf{b} \cdot \mathbf{u} d\mathbf{x}$
- Applying the principal of least action gives the nonlocal dynamics $\rho \ddot{\mathbf{u}}(\mathbf{x},t) = \mathbf{F}^{\epsilon}(\mathbf{x},t) + \mathbf{b}(\mathbf{x},t)$, for $\mathbf{x} \in D$
- Initial condition $\mathbf{u}(\mathbf{x},0) = \mathbf{u}_0(\mathbf{x}), \dot{\mathbf{u}}(\mathbf{x},0) = \mathbf{v}_0(\mathbf{x})$
- Boundary condition $\mathbf{u}(\mathbf{x}, \mathbf{t}) = \mathbf{0}$ for $\mathbf{x} \in D_c$
- For $\mathbf{b} \in C^1([0,T]; L^{\infty}(D; \mathbb{R}^d))$ and initial data $\mathbf{u}_0, \mathbf{v}_0 \in L^{\infty}(D; \mathbb{R}^d)$, solution exist in $C^2([0,T]; L^{\infty}(D; \mathbb{R}^d))$ Lipton et al (2018)

Finite difference approximation

8

Approximate peridynamic equation using piecewise constant interpolation and central in time discretization. Let \mathbf{u}_i^k denote the discrete displacement at mesh node \mathbf{x}_i and time $t^k = k\Delta t$. We consider following piecewise constant function

$$\mathbf{u}_h^k(\mathbf{x}) = \sum_{i,\mathbf{x}_i \in D} \mathbf{u}_i^k \chi_{U_i}(\mathbf{x})$$

Discrete problem is

$$\frac{\textbf{u}_h^{k+1} - 2\textbf{u}_h^k + \textbf{u}_h^{k-1}}{\Delta t^2} = \textbf{F}_h(t^k) + \textbf{b}_h^k,$$

where

$$\label{eq:fh} \boldsymbol{F}_h(\boldsymbol{x},t^k) = \sum_{i,\boldsymbol{x}_i \in D} \boldsymbol{F}(\boldsymbol{x}_i,t^k) \chi_{U_i}(\boldsymbol{x}),$$

$$\boldsymbol{b}_h(\boldsymbol{x},t^k) = \sum_{i,\boldsymbol{x}_i \in D} \boldsymbol{b}(\boldsymbol{x}_i,t^k) \chi_{U_i}(\boldsymbol{x})$$

Writing discrete problem in two first order difference equation

$$egin{aligned} rac{ extbf{u}_h^{k+1} - extbf{u}_h^k}{\Delta t} &= extbf{v}_h^{k+1} \ rac{ extbf{v}_h^{k+1} - extbf{v}_h^k}{\Delta t} &= extbf{F}_h(t^k) + extbf{b}_h^k \end{aligned}$$

A priori convergence

9

- Well-posedness of solutions in Hölder space $C^{0,\gamma}(D;\mathbb{R}^d)$ and existence of solutions in $C^2([0,T];C^{0,\gamma}(D;\mathbb{R}^d))$ is shown in **Jha & Lipton (2018a)**

Theorem 1. Let $\epsilon > 0$ be fixed. Let (\mathbf{u}, \mathbf{v}) be the solution of peridynamic equation. We assume $\mathbf{u}, \mathbf{v} \in C^2([0,T];C^{0,\gamma}(D;\mathbb{R}^d))$. Then the finite difference scheme is consistent in both time and spatial discretization and converges to the exact solution uniformly in time with respect to the L^2 norm. If we assume the error at the initial step is zero then the error E^k at time t^k is bounded and satisfies

$$\sup_{0 \leq k \leq T/\Delta t} \mathsf{E}^k \leq O\left(C_t \Delta t + C_s \frac{h^\gamma}{\epsilon^2}\right),$$

where constant C_s and C_t are independent of h and Δt and C_s depends on the Hölder norm of the solution and C_t depends on the L^2 norms of time derivatives of the solution.

Numerical experiments: Material properties

10

- Pairwise potential: $\psi(\mathbf{r}) = \mathbf{c}(1 \exp[-\beta \mathbf{r}^2])$
- State-based potential: $g(r) = \overline{C}r^2/2$
- \bullet Influence function: J(r)=1-r for $0\leq r<1$ and J(r)=0 for $r\geq 1$
- Critical strain: $S_c(y, x) = \frac{\pm \overline{r}}{\sqrt{|y x|}}$

Parameters \ Poisson's ratio	$\nu = 0.22$	$\nu = 0.245$
С	4712.4	4712.4
Ē	-1.0623×10^{12}	$-1.7349 imes 10^{11}$
β	$1.7533 imes 10^{8}$	$1.5647 imes 10^{8}$
ī	5.3402×10^{-5}	5.6529×10^{-5}

Table 1: Peridynamic material parameters assuming bulk modulus $K=25\,\text{GPa}$ and critical energy release rate $G_c=500\,\text{J/m}^{-2}$. Density is $\rho=1200\,\text{kg/m}^3$. Relation between peridynamic parameters and elastic constant and G_c is established in **Lipton et al (2018)**.

Mode I crack propagation: Setup

- Poisson's ratio: $\nu = 0.245$
- Final time $T = 34\mu$ s, time step $\Delta t = 0.004\mu$ s
- Uniform grid on square domain $D = [0, 0.1 \text{ m}]^2$

Mode I crack propagation: Damage profile

- Horizon $\epsilon = 4 \, \text{mm}$, mesh size $h = 1 \, \text{mm}$
- To measure the extent of damage at material point \mathbf{x} we consider function $\mathbf{Z}(\mathbf{x})$ given by

$$Z(\boldsymbol{x}) = \max_{\boldsymbol{y} \in H_{\varepsilon}(\boldsymbol{x}) \cap D} \frac{S(\boldsymbol{y}, \boldsymbol{x}; \boldsymbol{u})}{S_c}$$

Mode I crack propagation: Fracture energy

13

• We define the crack zone as set of material points which have Z > 1. For a crack of length I, the Griffith's fracture energy (G.E.) will be $G.E. = G_c \times I$. The peridynamic fracture energy (P.E.) is given by

$$\mathsf{P.E.} = \int_{\substack{\mathbf{x} \in \mathsf{D}, \\ Z(\mathbf{x}) > 1}} \left[\frac{1}{\epsilon^{\mathsf{d}} \omega_{\mathsf{d}}} \int_{\mathsf{H}_{\epsilon}(\mathbf{x})} |\mathbf{y} - \mathbf{x}| \mathcal{W}^{\epsilon}(\mathsf{S}(\mathbf{y}, \mathbf{x}, \mathbf{u})) \, \mathrm{d}\mathbf{y} \right] \, \mathrm{d}\mathbf{x},$$

where $\mathcal{W}^{\epsilon}(S(\mathbf{y}, \mathbf{x}, \mathbf{u}))$ is the bond-based potential.

Mode I crack propagation: Convergence rate

14

• For each horizon in 8, 4, 2, 1 mm, we obtain numerical results for three mesh sizes $h = \epsilon/2, \epsilon/4, \epsilon/8$ and compute the rate of convergence

Specimen with pre-crack under bending load

- Poisson's ratio: $\nu = 0.22$
- Final time $T = 350\mu$ s, time step $\Delta t = 0.0014\mu$ s
- Uniform grid on rectangle domain $D = [0, 0.25 \,\mathrm{m}] \times [0, 0.05 \,\mathrm{m}]$

Specimen with pre-crack under bending load

$$t=130\,\mu\,\mathrm{s}$$

 $t=180\,\mu\,\mathrm{s}$

 $\mathsf{t} = 190\,\mu\,\mathsf{s}$

$$t=180\,\mu\,\mathrm{s}$$

$$t=220\,\mu\,\mathrm{s}$$

$$t=240\,\mu\,\mathrm{s}$$

Specimen with pre-crack under bending load

Finite element approximation

18

Let V_h is given by linear continuous interpolations over tetrahedral or triangular elements \mathcal{T}_h where h denotes the size of finite element mesh. Here we assume the elements are conforming and the finite element mesh is shape regular and $V_h \subset H_0^1(D; \mathbb{R}^d)$.

For a continuous function \boldsymbol{u} on D, $\mathcal{I}_h(\boldsymbol{u})$ is the continuous piecewise linear interpolant on \mathcal{T}_h . It is given by

$$\left. \mathcal{I}_h(\boldsymbol{u}) \right|_T = \mathcal{I}_T(\boldsymbol{u}) \qquad \forall T \in \mathcal{T}_h,$$

where $\mathcal{I}_{\mathsf{T}}(\mathbf{u})$ is the local interpolant defined over finite element T and is given by $\mathcal{I}_T(\boldsymbol{u}) = \sum_{i=1}^n \boldsymbol{u}(\boldsymbol{x}_i) \phi_i.$ Here \boldsymbol{n} is the number of vertices in an element $T,\,\boldsymbol{x}_i$ is the position of vertex i,

and ϕ_i is the linear interpolant associated to vertex i.

Let $\mathbf{r}_h(\mathbf{u})$ denote the projection of $\mathbf{u} \in H^1_0(D; \mathbb{R}^d)$ on V_h . For the L^2 norm it is defined as $||u-r_h(u)||=\inf_{\tilde{u}\in V_h}||u-\tilde{u}||.$

and satisfies

$$(\mathbf{r}_h(\mathbf{u}), \tilde{\mathbf{u}}) = (\mathbf{u}, \tilde{\mathbf{u}}), \qquad \forall \tilde{\mathbf{u}} \in V_h$$

Central difference time discretization

19

 $(\boldsymbol{u}_h^k, \boldsymbol{v}_h^k)$ and $(\boldsymbol{u}^k, \boldsymbol{v}^k)$ denote the approximate and the exact solution at k^{th} step. Projection is denoted as $(\boldsymbol{r}_h(\boldsymbol{u}^k), \boldsymbol{r}_h(\boldsymbol{v}^k))$. Approximate initial condition $\boldsymbol{u}_0, \boldsymbol{v}_0$ by their projection $\boldsymbol{r}_h(\boldsymbol{u}_0), \boldsymbol{r}_h(\boldsymbol{v}_0)$ and set $\boldsymbol{u}_h^0 = \boldsymbol{r}_h(\boldsymbol{u}_0), \boldsymbol{v}_h^0 = \boldsymbol{r}_h(\boldsymbol{v}_0)$.

For $k \geq 1$, $(\boldsymbol{u}_h^k, \boldsymbol{v}_h^k)$ satisfies, for all $\boldsymbol{\tilde{u}} \in V_h$,

$$\begin{split} & \left(\frac{\textbf{u}_h^{k+1} - \textbf{u}_h^k}{\Delta t}, \tilde{\textbf{u}} \right) = (\textbf{v}_h^{k+1}, \tilde{\textbf{u}}), \\ & \left(\frac{\textbf{v}_h^{k+1} - \textbf{v}_h^k}{\Delta t}, \tilde{\textbf{u}} \right) = (\textbf{F}^{\epsilon}(\textbf{t}^k), \tilde{\textbf{u}}) + (\textbf{b}_h^k, \tilde{\textbf{u}}), \end{split}$$

where we denote projection of $\mathbf{b}(\mathsf{t}^k)$, $\mathbf{r}_\mathsf{h}(\mathbf{b}(\mathsf{t}^k))$, as \mathbf{b}_h^k . Combining the two equations delivers central difference equation for \mathbf{u}_h^k . We have

$$\left(\frac{\textbf{u}_h^{k+1} - 2\textbf{u}_h^k + \textbf{u}_h^{k-1}}{\Delta t^2}, \tilde{\textbf{u}}\right) = (\textbf{F}^\epsilon(t^k), \tilde{\textbf{u}}) + (\textbf{b}_h^k, \tilde{\textbf{u}}), \qquad \forall \tilde{\textbf{u}} \in V_h.$$

For k = 0, we have $\forall \tilde{\boldsymbol{u}} \in V_h$

$$\left(\frac{\mathbf{u}_{\mathsf{h}}^1 - \mathbf{u}_{\mathsf{h}}^0}{\Delta \mathsf{t}^2}, \tilde{\mathbf{u}}\right) = \frac{1}{2} (\mathbf{f}^{\epsilon}(\mathbf{u}_{\mathsf{h}}^0), \tilde{\mathbf{u}}) + \frac{1}{\Delta \mathsf{t}} (\mathbf{v}_{\mathsf{h}}^0, \tilde{\mathbf{u}}) + \frac{1}{2} (\mathbf{b}_{\mathsf{h}}^0, \tilde{\mathbf{u}}).$$

A priori convergence

- Well-posedness of solutions in $H^2(D; \mathbb{R}^d) \cap H^1_0(D; \mathbb{R}^d)$ space and existence of $C^2([0,T];H^2(D;\mathbb{R}^d)\cap H^1_0(D;\mathbb{R}^d))$ is shown in **Jha & Lipton (2018b)**

Theorem 2. Let $\epsilon > 0$ be fixed. Let (\mathbf{u}, \mathbf{v}) be the solution of peridynamic equation. We assume $\mathbf{u}, \mathbf{v} \in C^2([0,T]; H^2(D; \mathbb{R}^d) \cap H^1_0(D; \mathbb{R}^d))$. Then the finite difference scheme is consistent in both time and spatial discretization and converges to the exact solution uniformly in time with respect to the L^2 norm. If we assume the error at the initial step is zero then the error E^k at time t^k is bounded and satisfies

$$\sup_{0 \leq k \leq T/\Delta t} \mathsf{E}^k \leq O\left(C_t \Delta t + C_s \frac{h^2}{\epsilon^2}\right),$$

where constant C_s and C_t are independent of h and Δt and C_s depends on the H^2 norm of the solution and C_t depends on the L^2 norms of time derivatives of the solution.

Mode I crack propagation: Setup

- Poisson's ratio: $\nu = 0.245$
- Final time $T = 40\mu s$, time step $\Delta t = 0.004\mu s$
- Uniform grid on square domain $D = [0, 0.1 \text{ m}]^2$

Mode I crack propagation: Damage profile

- Horizon $\epsilon = 8 \, \text{mm}$, mesh size $h = 2 \, \text{mm}$
- To measure the extent of damage at material point \mathbf{x} we consider function $\mathbf{Z}(\mathbf{x})$ given by

$$Z(\mathbf{x}) = \max_{\mathbf{y} \in \mathsf{H}_{\epsilon}(\mathbf{x}) \cap \mathsf{D}} \frac{\mathsf{S}(\mathbf{y}, \mathbf{x}; \mathbf{u})}{\mathsf{S}_{\mathsf{c}}}$$

$$\mathsf{t} = \mathsf{30}\,\mu\,\mathsf{s}$$

$$t=40\,\mu\,\mathrm{s}$$

Mode I crack propagation: Fracture energy

Mode I crack propagation: Convergence rate

24

• For each $8\,mm$ and $4\,mm$ horizon, we obtain numerical results for three mesh sizes $h=2,1,0.5\,mm$ and compute the rate of convergence

E Summary

- Numerical analysis of state-based peridynamics model.
- Well-posedness of evolutions in appropriate spaces for error estimates.
- Implementation of finite difference and finite element approximation.
- Good agreement between a priori rate and numerical convergence rate for both finite difference and finite element approximation.
- Peridynamic fracture energy is shown to be close to Griffith's fracture energy for mode I crack propagation.

Future works

- Comparison between peridynamics model (in Quasistatic setting) and phase field models.
- Coupling of local and nonlocal models to reduce computational time and memory consumption.
- 3-d implementation of peridynamic code.

Thank you!