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Let D be the material domain, D. be nonlocal boundary, and u be the
displacement field.

Let x denote the material point and x(x) = x+u(x) is the deformed position.

Strain between two material point x and y is given by

S(y, x;u) = y+uly) - Ty__“x(|x)| —ly — x|

Assuming that displacement is small compared to the size of material, we
linearize S and get

u(y) —u(x) y-—x
y—x| |y—x]

S(y,x;u) =
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Consider a material point x. We introduce a length scale ¢ which is called
size of horizon. This controls the extent of nonlocal interaction in the material.
Generic form of force at x in peridynamic model is given by

1 e
FE(x;u) = —— £ (y, x; u)d
(x7 u) |B€(X)| /|3€(x) (y7 x7 u) y

f depends on choice of e.
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Introduction: Example of a bond-force 4
force A
_S.
. Example: S >
~e JE(ly — x — X ‘
f(y,x,u) = pu(S(y,x;u))4 (|y€ ‘)S(y,X; u) ‘z X

where u(S) = 1if |S| < Sc and ©(S) = 0 when |S| > S..

. If u € C3(D;RY), and sup,.p |V>u(x)| < co then

_ _ 2
sup |f(x;u)—V-CEu(x)| = O(¢*), C =

J(|&])esResResRee |E|dE,
sup B1(0)] /o) (1€])es®esRes®ee €|

ec = £/|€| and the strain tensor is Eu(x) = (Vu(x) + Vu'(x))/2.
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@® We consider peridynamic force of the form

) J4(ly = x| oy —x
f(x;u) = 0 — x|S d
) =500 S ey —x O3 XSy

where f is smooth, bounded far away, and linear near origin (Lipton 20141!)

f(ly — xI5?) sf(|y — xI5?)
A
foo

-S.

\J

-Se Se

® Critical strain: Sc(y,x) = ——

vV Iy—x|

[1] Robert Lipton (2014) Dynamic brittle fracture as a small horizon limit of peridynamics Journal of Elasticity 117 no. 1 2150
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® InJha & Lipton 2017a' and Jha & Lipton 2017b?, we introduce bound-
ary function w in peridynamic force as follows

€y 1) — J(ly —x|) B y —x
f(X,U)— ’BG(O)‘ Be(x)w(X)w(y) e|y—x| an(‘y X‘S2)’y_x’dy

oD
w(x) =0

@® With boundary function w, we can show existence of solutions in regular
spaces like Cg”Y(D;Rd) and H3(D;RY) U L*(D;RY) for Dirichlet boundary con-
dition u = 0 on 9D.

[1] Prashant K. Jha and Robert Lipton (2017) Numerical analysis of peridynamic models in Hélder space. To appear in STAM

Journal on Numerical Analysis. arXiv preprint arXiv:1701.02818
[2] Prashant K. Jha and Robert Lipton (2017) Finite element approximation of nonlocal fracture models. Under review in IMA

Journal of Numerical Analysis. arXiv preprint arXiv:1710.07661
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@® Peridynamics equation: for x € D and t € [0, T]
pi(x,t) = £(x; u(t)) + b(x, )
@® Boundary condition: u(x,t) = 0 for x € 9D and for t € [0, T]

@ [nitial condition: u(x,0) = ug(x) and u(x,0) = vo(x) for x € D

® Weak form: Multiplying peridynamic equation by smooth test function i
such that i = 0 on 0D, integrating over D, and using nonlocal integration by
parts, gives

(pu(t), @) +a“(u(t), @) = (b(t), )

where

2“(u, |/1£@) J(ly — <D (ly — xISW)2)ly — x|S(u)S(v)dydx

and
_uly) —u(x) y-x o0 vy) V(X)) y-—x
W= Tx = YT Ty T y=x
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We approximate peridynamic equation using linear continuous finite ele-
ments. We focus on following three key points

® Well-posedness of peridynamic equation in H3(D; RY) space.

@® Apriori error estimates due to finite element approximations for

exact solutions in H3(D;RY).

@® Numerical verifications of convergence rate.
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Let W denote the H3(D;RY) N L°°(D;RY) space. Norm on W is defined as

ullw = [lull2 + [Juf|oc

We will assume that u € H3(D;RY) is extended by zero outside D, therefore,
u=0,Vu=0,Vu=0 for x £D and [ul[H2(D:rey = |[U][H2(Rd;RYY -

To show existence of solutions in W, we proceed as follows:

P Obtain Lipschitz bound on peridynamic force in W.

» Using Lipshitz bound, show local existence of unique solutions.

Show that local existence of unique solutions can be repeatedly
applied to get global existence of solutions for any time domain (=T, T).
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We write the peridynamics equation as an equivalent first order system with
y1(t) = u(t) and ya(t) = v(t) with v(t) = a(t). Lety = (y1,y2)" whereys,y» € W
and let Fe(y,t) = (F{(y,t), F5(y,t))" such that

Z?f(yat) = Y2,

F5(y,t) := £ (y1) + b(?).

The initial boundary value is equivalent to the initial boundary value problem
for the first order system given by

y(t) = F(y,1),

with initial condition given by y(0) = (ug,vo)T € W x W.
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Theorem 1. Lipschitz bound on peridynamaics force
Assuming |Vw| < Cy, < 00, |V2w| < Cy, < 00, for any u,v € W, we have
e e L1 + Ly(JJullw + [[vllw) + Ls(|Jullw + |lv]|w)?
[1F°(u) = F(v)|jw < 3 [lu—vllw

where constants L1, Lo, L3 are independent of €, u, and v. Also, for u € W, we
have

L L 2
||f€(U)||W < 4||u||W+ 5||UHW

where constants are independent of € and u.
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Theorem 2. Local existence and uniqueness

Given X =W x W, b(t) € W, and initial data xg = (ug,vg) € X. We suppose
that b(t) is continuous in time over some time interval lg = (=T, T) and satisfies
Supeey, ||B(t)|lw < 0o. Then, there exists a time interval I = (—=T',T") C lg and

unique solution y = (yt,y?) such thaty € C1(I'; X) and

t
y(t) = g —i—/ Fe(y(r),7)dr, fortel
0
or equivalently

y'(t) = F(y(t),t), with y(0) = xg, fortel

where y(t) and y'(t) are Lipschitz continuous in time fort € " C ly.
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Proof: Let T > 0 and Y(T’) be a set of functions y(t) € W for t € (=T, T').
We show that there exists such a set Y(T’') and T’ > 0 such that map S,,,
defined as follows

S (¥)(t) = x0 + / F(y(r), 7) dr,

or in element form

SL (y)(t) = g + / y2(7) dr
S2 (y)(t) =3 + / (F<(y*(r)) + b(r)) dr,

maps functions in Y(T’) to functions in Y(T’). We then apply fixed point theo-
rem such as in Driver 20031.

[1] Bruce K Driver (2003) Analysis tools with applications. Lecture notes.
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Write y(t) = (y'(t),y*(t))" with [ly[lx = [ly*(t)llw+ly*(t)[lw- Let R > [xo[x
and B(O,R) = {y € X : |ly|lx < R}. Let r < min{1,R — ||xo||x}. We have
r? < (R — [|xol|x)? and r* < r < R — ||xg||x. Consider the ball B(xq,r?) = {y €
X ly = xollx < r?}.

Then we have B(xg,r?) C B(xg,r) C B(0,R).

Introduce 0 < T” < T and the associated set Y(T’) of functions in W taking
values in B(xg, r?) for I' = (=T, T’) Clg = (=T, T). Le. forally € Y(T'), y(t) €
B(xg,r?) for all t € (—=T’,T’). We want to find T’ such that S,,(y)(t) € B(xo, r?)
for all t € (—=T’, T") implying S,,(y) € Y(T).

Writing out the transformation with y(t) € Y(T’) gives
t
L) =3+ [ y(rdr
t
L)) =G+ [ () +b(r) o
We simply have

1SL ()1 —xdllw < sup  [ly2()|wT".
te(=T/,T7)
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Using bound on f°, we have

‘T L L
12,000~ lhw < [ | 551 0lhw -+ 53515 Ol + 0G| 0

Let b = supy, ||b(t)|lw. Noting that transformation Sy, is defined for t € I' =
(=T, T') and y(7) = (y'(7),y?(7)) € B(x0,r*) C B(0,R) asy € Y(T’), we have
from 3 and 4

1S5 () (1) —xgllw < RT’,

[4R'+'[5R2 -
193,000 = llw < [ #2245 T

Combining to get

LR + LsR? _
[S0(0(0) = sall < |57 4R 4B T
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r2

[,R+LsR2 IR 5}

572

Choosing T’ as follow: T’ < [

Then Sy, (y) € Y(T') for ally € Y(T") as  ||Sx, (y)(t) — xol|x < r°.

Since r? < (R — |[xo]|x)?, we have

2 R — 2
S N
[L‘*R;/L;R +R+b] [L“R;/LSR +R+b]
Let 6(R) be given by
R— 2
) e (B = l0ll)

[i‘*i?/fsf’m + R+ E] '

Note that 6(R) is increasing with R > 0 and satisfies

£5/2

0o := lim O(R) =
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So given R and ||xg||x we choose T’ according to

0(R

% < T <0(R),
and set I' = (=T’,T"). This way we have shown that for time domain I’ the
transformation Sy, (y)(t) maps Y(T’) into itself. Existence and uniqueness of

solution can be established using Theorem 6.10 in Driver 20031.

[1] Bruce K Driver (2003) Analysis tools with applications. Lecture notes.
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Theorem 3. Fxistence and uniqueness of solutions over finite time
intervals

For any initial condition xg € X = W x W, time interval lg = (=T, T), and
right hand side b(t) continuous in time for t € lg such that b(t) satisfies
sup¢, ||b(t)||w < 0o, there is a unique solution y(t) € C'(lo; X) of

y(t) = o + / Fe(y(r),7)dr,

or equivalently
y'(t) = F(y(t), 1), with y(0) = xo,

where y(t) and y'(t) are Lipschitz continuous in time for t € lo.
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We have shown a unique local solution over a time domain (—T', T") with
@ < T'. Since (R) /€2 /Ls as R ' oo we can fix a tolerance 7 > 0 so that
[(€/2/2Ls) — 1] > 0.

Then for any initial condition in W and b = supi¢;_t 1 [|b(t)||lw we can
choose R sufficiently large so that ||xg||x < R and 0 < (¢%/2/2Ls) —n < T'.

Since choice of T’ is independent of initial condition and R, we can always find
local solutions for time intervals (—T’,T’) for T’ larger than [(5/2/2Ls) — 1] >
0. Therefore we apply the local existence and uniqueness result to uniquely
continue local solutions up to an arbitrary time interval (—T,T).
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Let V,, be the approximation of H%(D, RY) associated to the linear continuous
interpolation function over triangulation 7, where h denotes the size of finite
element mesh. Let Z,,(u) be defined as below

To(u)(x) = > [Z U(Xi)fbi(x)] :

TeTn LieNT

Assuming that the size of each element in triangulation 7, is bounded by h,
we have (see Theorem 4.6 Arnold 2011%)

lu—Zn()|| < ch?|lullz,  VYu e Hg(D;R?).
Projection of function in FE space:

— — inf —ull.
Ju —rp(u)] ﬁlgvhllu ||
We have

(ro(u), @) = (u, @), Vi € V.
Jlu—ra(u)]| <ch?[lulla  Vu € H5(D;RY).

[1] Douglas N. Arnold (2011) Lecture notes on numerical analysis of partial differential equations. http://www.math.umn.edu/ ~ arnold/8445/notes.pdf
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Semi-discrete approximation and stability 21
Let u,(t) € Vy, be the approximation of u(t) which satisfies following
(U, @) + a(un(t),a) = (b(t), ), Vi € V.

We show that the semi-discrete approximation is stable, i.e. energy at time t is
bounded by initial energy and work done by the body force.

The total energy £¢(u)(t) is given by the sum of kinetic and potential energy
given by

£ (u)(e) = 5602 + PO (u(e)). PO(w) = [ lBl() f, sty —xdy | o

where bond-potential is given by W¢(S,y —x) = w(x)w(y) Iy = x) f(ly —x|S?).
€

Theorem 4. Stability of semi-discrete approximation
The semi-discrete scheme is stable and the energy £(up)(t) satisfies the follow-
ing bound

E(un)(t) < [\/56(%)(0) + /Ot Hb(T)HdT] 2 -
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Central difference time discretization 22
(uf,vf) and (uX,v¥) denote the approximate and the exact solution at k®

step. Projection is denoted as (rp(u®),ry(v¥)). Approximate initial condition

uo, vo by their projection r,(ug), rn(vo) and set ud = ry(ug), v = ry(vo).

For k > 1, (uf, vf) satisfies, for all & € Vj,

k+1 k

u —u

h h =~ k+1 =~
< Q t 3 U) (vh ) U),

k+1 ok

Y VA . . .
( " ) = (F(u), ) + (b, ),

where we denote projection of b(t), r(b(t¥)), as by. Combining the two equa-
tions delivers central difference equation for uﬁ. We have

k1 _ ok k—1
(uh i ,a><f€<uﬁ>,a>+<bﬁ,a>, Vi € Vi,

For k = 0, we have Vu € V,

1 0
up —up o\ Lo o) o Looay, Loos
(M) = S8+ () + (b0
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Convergence of approximation 23

Error EX is given by EX := ||uf — u(t¥)]| + [|vf — v(t¥)||. We split the error as
follows

E < (Jlu* = ra(u )]+ [V = (V1) + (") — ug][ + [ (v") = vi]]) .

where first term is error between exact solution and projections, and second
term is error between projections and approximate solution.

Let
e, (u) := rp(u") — uy, e (v) := 1, (v*) —vj;
and
e® := |lef (w)|| +[lek (v)]l-
We have
EX < Cpoh? 4 €,
where
ou(t
Co = supllu(t)]a + sup | 2
t t
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Theorem 5. Convergence of Central difference approximation

Let (u,v) be the exact solution of peridynamics equation and Let (uf,vf) be the
FE approzimate solution. If u,v € C2([0,T],H3(D;RY)), then the scheme is
consistent and the error EX satisfies following bound

2
sup EX = C.At + CS—2
k<T/At ¢

where constant C; and Cs are independent of h and At and depends on the norm
of ezact solution. Constant L/€* is the Lipschitz constant of f(u) in L°.
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Convergence of approximation 25

Outline of proof:

(1) Write peridynamics equation for projection (ry(u*), r,(v¥)) which involves
consistency error.

(2) Estimate consistency error terms. One of the error term is as follows

L

62

Lc

[1F (™) = £ (r ()] < S lu® = (ud)]l2 < b2 sup ||u(?)]]2

(3) Substract peridynamics equation corresponding to projection (ry,(u®), ry, (v))

and approximate solution (uf,vf), use estimates on consistency errors, and ap-
ply discrete Gronwall inequality to obtain the bound on e = [|uf — r,(u®)|| +

[[vis = ra (V).
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Stability of fully discrete approximation: 26
Linearized peridynamic equation

Consider linearization of peridynamic force f¢ defined as

i)t = |B:Ex) Be (%) w<x)w(y)J€(|y€_ XDf/(O)S(u) |§ : i’ i

Weak form of peridynamic equation is given by (pu(t),a) + af(u(t),d) =
(b(t), 1), where af (u,v) is now bilinear map.

Following Karaa 2012!, wehave

Theorem 6. Stability of Central difference approximation of linearized
peridynamaics

In the absence of body force b(t) = 0 for all t, if At satisfies the CFL like
condition

At? at(u, u)
—  sup
ucVp\{0} (U, U)

<1,

then the discrete energy is conserved and we have the stability.

[1] Samir Karaa (2012) Stability and convergence of fully discrete finite element schemes for the acoustic wave equation.
Journal of Applied Mathematics and Computing, 40(1-2):659-682, 2012.
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e h=¢/4¢/8 .
e Time domain [0,1] with At=2x107° 149, |1
e p=11f(r)=1—exp|—r|,J(r)=1—r : 5
1
Let  w(x,t) = a(x)sin(nm(d-x +1))d, B —— D B
14 2e

where a(x) — 0.001 % 5(3‘1.5(32(1 — 561)(1 - 5132)7 d= (17 O)

Define body force as follows

b(x) = pdw(x,t) — F(w(t))(x)

and set initial condition ug(x) = w(0, x), vo(x) = w(0, x).

Then u(x,t) = w(x,t) is the solution.

[1] Prashant K. Jha and Robert Lipton (2018) Robust finite element implementation for nonlocal fracture models. Under preparation.
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Rate of convergence wrt L2 norm

3.0

2.8
50
526 —s— n=1
-
2 —<— n=10
o —— 1=0l)
— 2.4
=
3

]
]

Time
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Numerical results: Different initial 29
conditions
ee=02 u=0
o h= 6/2,6/4, 6/8 with ' = hl/h2 = h2/h3 =2
e Time domain [0,1] with At =2 x 107> q
1+ 2¢
o« p=1,f(r) =1—exp[r], J(r) =1 —r
D
1
g ([jur — usl]) —log ([jus — us]) B —— )
log(ry,) ’ 14 2¢

Let u =0 on D.. We consider initial condition of the form
ug(x) = 0, vo(x) = nma(x) exp[—|x — x.|?/b]d,

where a(x) = 0.1 % x;x2(1 — x1)(1 — x) for x € D and 0 otherwise,
x. = (0.5,0.5),d = (0,1), and b =0.1.
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Numerical results: Different initial
conditions

Rate of convergence wrt L2 norm

]
o

]
e

—a— n=1

]
]

—e— n=110

—>— n=100

]
'_'..

Rate of convergence

]
—_—
po—

0.0 0.2 0.4 0.6 0.8 1.0
Time
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28 Numerical results for damage model

We introduce new damage model within peridynamic state-based framework
in Lipton et. al. 2018,

We focus only on bond-based part of the interaction. Peridynamic force is

of the form A
. 2 ~e
f(x;u(t)) = H* (u)(y, x, t)f (y,x;u(t)) dy, o
1Be(x)| JprB.(x) ™
where damage of bond y — x at time t is given by

1w (yx ) < | Js(S(y, %, 7u) ir)

-~ — ,
e

. . . . . . Js(x)
Jjs is nonzero postive for strain only above critical strain S.

Y

-
-

- S"’-"I S(_’.

[1] Robert Lipton, Eyad Said and Prashant K. Jha (2018) Free Damage Propagation with Memory. Journal of Elasticity.
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Periodic loading 32
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Def ection vs total force
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e Numerical analysis of state-based model.

e Analysis of state-based peridynamic energy in the limit nonlocal length-
scale tends to zero.

e Implementation of adaptive-mesh refinement.
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Thank you!
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