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We explore using neural operators, or neural network representations of nonlinear maps 
between function spaces, to accelerate infinite-dimensional Bayesian inverse problems 
(BIPs) with models governed by nonlinear parametric partial differential equations (PDEs). 
Neural operators have gained significant attention in recent years for their ability to 
approximate the parameter-to-solution maps defined by PDEs using as training data 
solutions of PDEs at a limited number of parameter samples. The computational cost of 
BIPs can be drastically reduced if the large number of PDE solves required for posterior 
characterization are replaced with evaluations of trained neural operators. However, 
reducing error in the resulting BIP solutions via reducing the approximation error of the 
neural operators in training can be challenging and unreliable. We provide an a priori error 
bound result that implies certain BIPs can be ill-conditioned to the approximation error of 
neural operators, thus leading to inaccessible accuracy requirements in training. To reliably 
deploy neural operators in BIPs, we consider a strategy for enhancing the performance of 
neural operators: correcting the prediction of a trained neural operator by solving a linear 
variational problem based on the PDE residual. We show that a trained neural operator 
with error correction can achieve a quadratic reduction of its approximation error, all 
while retaining substantial computational speedups of posterior sampling when models 
are governed by highly nonlinear PDEs. The strategy is applied to two numerical examples 
of BIPs based on a nonlinear reaction–diffusion problem and deformation of hyperelastic 
materials. We demonstrate that posterior representations of the two BIPs produced using 
trained neural operators are greatly and consistently enhanced by error correction.
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1. Introduction

Many mathematical models of physical systems are governed by parametric partial differential equations (PDEs), where 
the states of the systems are described by spatially and/or temporally–varying functions of PDE solutions, such as the evo-
lution of temperature fields modeled by the heat equation and material deformation modeled by the nonlinear elasticity 
equation. The parameters, such as thermal conductivity and Young’s modulus, of these models, often characterize properties 
of the physical systems and cannot be directly determined; one has to solve inverse problems for that purpose, where the 
parameters are inferred from sparse and noisy observations of the states. To account for uncertainties in observations and 
our prior knowledge of the parameters, represented by prior probability distributions, in the solutions of inverse problems, 
they are often formulated via Bayes’ rule, or as Bayesian inverse problems, for which solutions are probability distributions 
of the parameters conditioned on the observations, or posterior probability distributions. In some scenarios, our prior knowl-
edge of the parameters requires them to be treated as functions, leading to infinite-dimensional Bayesian inverse problems. 
These scenarios arise, for example, when the parameters are possibly spatially varying with uncertain spatial structures. 
Bayesian inverse problems are fundamental to constructing predictive models [1–4], and the need for inferring parameters 
as functions can be found in many areas of engineering, sciences, and medicine [5–10].

For models governed by large-scale highly nonlinear parametric PDEs, numerical simulations are computationally ex-
pensive as it involves solving high-dimensional linear systems in an iterative manner many times to obtain solutions with 
desired accuracy [11]. In these cases, solving infinite-dimensional Bayesian inverse problems can be intractable, as numer-
ically approximating infinite-dimensional posterior distributions with complex structures requires an untenable number of 
numerical solutions at different parameters, i.e., these problems suffer from the curse of dimensionality. Many mathemati-
cal and numerical techniques are developed to mitigate the computational burden of these problems. Examples of these 
techniques are (i) advanced sampling methods exploiting the intrinsic low-dimensionality [12,13] or derivatives [14–16] of 
posterior distributions, (ii) direct posterior construction and statistical computation via Laplace approximation [17,18], deter-
2
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ministic quadrature [19,20], or transport maps [21–24], and (iii) surrogate modeling using polynomial approximation [25,26]
or model order reduction [27–29] combined with multilevel or multifidelity methods [30–32].

Neural operators, or neural network representations of nonlinear maps between function spaces, have gained significant 
interest in recent years for their ability to represent the parameter-to-state maps defined by nonlinear parametric PDEs, 
and approximate these maps using a limited number of PDE solutions at samples of different parameters [33–44]. Notable 
neural operators include POD-NN [44], DeepONet [38], Fourier neural operator [45], and derivative-informed reduced basis 
neural networks [39]. The problem of approximating nonlinear maps is often referred to as the operator learning problem, 
and numerically solving the operator learning problem by optimizing the neural network weights is referred to as training. 
Neural operators are fast-to-evaluate and offer an alternative to the existing surrogate modeling techniques for accelerating 
the posterior characterization of infinite-dimensional Bayesian inverse problems by replacing the nonlinear PDE solves with 
evaluations of trained neural operators. We explore this alternative surrogate modeling approach using neural operators in 
this work.

1.1. Neural operators as surrogate models: advantages and limitations

The direct deployment of trained neural operators as surrogates of the nonlinear PDE-based model transfers most of the 
computational cost from posterior characterization to the offline generation of training samples and neural network training. 
Moreover, in contrast to some of the surrogate modeling approaches that approximate the parameter-to-observation or 
parameter-to-likelihood maps [25,46], neural operators approximate the parameter-to-state map, or learn the physical laws. 
As a result, they can be used as surrogates for a class of different Bayesian inverse problems with models governed by 
the same PDEs but with different types of observations and noise models, thus further amortizing the cost of surrogate 
construction.

While the drastic reduction of computational cost is advantageous, the accuracy of trained neural operators as well as the 
accuracy of the resulting posterior characterization produced by them needs to be examined. In theory, there are universal 
approximation results, such as those for DeepONet [38], Fourier neural operators [35], and reduced basis architectures 
[33,40], that imply the existence of neural operators that approximate a given nonlinear map between function spaces within 
certain classes arbitrarily well. In practice, however, constructing and training neural operators to satisfy a given accuracy 
can be challenging and unreliable. One often observes an empirical accuracy ceiling – enriching training data and enhancing 
the representation power of network operators via increasing the inner-layer dimensions or the depth of neural networks, 
as often suggested by universal approximation theories, do not guarantee improved performance. In fact, in certain cases, 
increasing training data or depth of networks can lead to degraded performance. These behaviors are contrary to some other 
approximation methods, such as the finite element method with hp-refinement and surrogate modeling using polynomial 
approximation or model order reduction, for which theoretical results are well-connected to numerical implementation 
for controlling and reducing approximation errors [47–50]. The unreliability of neural operator performance improvement 
via training results from several confounding reasons discussed in this work. It is demonstrated via empirical studies in 
recent work by de Hoop et al. [51], where neural operator performance, measured by their cost–accuracy trade-off, for 
approximating the parameter-to-state maps of various nonlinear parametric PDEs are provided.

1.2. Neural operator approximation error in Bayesian inverse problems: estimation and correction

The approximation error of a trained neural operator in the operator learning problem propagates to the error in the 
solutions of Bayesian inverse problems when the trained neural operator is employed as a surrogate. By deriving an a 
priori bound, we demonstrate that the approximation error of a trained neural operator controls the error in the posterior 
distributions defined using the trained neural operator. Additionally, the bounding constant shows that Bayesian inverse 
problems can be ill-conditioned to the approximation error of neural operators in many scenarios, such as when the prior 
is uninformative, data is high-dimensional, noise corruption is small, or the models are inadequate. Our theoretical result 
suggests that for many challenging Bayesian inverse problems, posing accuracy requirements on their solutions may lead to 
significantly tighter accuracy requirements for neural operator training that are practically inaccessible.

In this work, we consider a strategy for reliably deploying a trained neural operator as a surrogate in, but not limited 
to, infinite-dimensional Bayesian inverse problems. This strategy is inspired by a recent work by Jha and Oden [52] on ex-
tending the goal-oriented a posteriori error estimation techniques [53–59] to accelerate Bayesian calibration of high-fidelity 
models with a calibrated low-fidelity model. Instead of directly using the prediction of the trained neural operator at a 
given parameter for likelihood evaluation, we first solve a linear error correction problem based on the PDE residual evalu-
ated at the neural operator prediction and then use the obtained solution for likelihood evaluation. We show that solving 
this error-correction problem is equivalent to generating one Newton iteration under some mild conditions, and a trained 
neural operator with error correction can achieve global, i.e., over the prior distribution, quadratic error reduction when the 
approximation error of the trained neural operator is relatively small. We expect that the significant accuracy improvement 
of a trained neural operator from the error correction leads to vital accuracy improvement of the posterior characteriza-
tion for challenging Bayesian inverse problems. The improvement in the accuracy of posterior characterization is achieved 
while retaining substantial computational speedups proportional to the expected number of iterative linear solves within a 
nonlinear PDE solve at parameters sampled from the posterior distribution.
3
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Two numerical examples are provided to showcase the proposed strategy’s utility. In the first example, we consider the 
inference of an uncertain coefficient field in an equilibrium nonlinear reaction–diffusion problem with a cubic reaction term 
from discrete state observations. The second example concerns the inference of Young’s modulus, as a spatially varying 
field, of a hyperelastic material from discrete observations of its displacement in response to an external force. For both 
examples, trained neural operators fail to recover all distinctive features of the posterior predictive means despite reaching 
their empirical accuracy ceilings. In contrast, the error-corrected neural operators are consistently successful in such tasks.

1.3. Related works

Next, we discuss related works on error correction in surrogate modeling approaches for Bayesian inverse problems. To 
the best of our knowledge, the existing works mainly focus on building data-driven models of the approximation error 
of surrogate parameter-to-observation maps. The sampling-based techniques for error correction presented in these works 
are different from the residual-based approach proposed in this work. The term model error correction sometime refers to 
numerical methods for representing model inadequacy, which is beyond the scope of this work.

In the context of model order reduction, Arridge et al. [60] proposed an offline sampling approach for constructing a 
normal approximation for the joint probability distribution of the error in surrogate-predicted observations and the param-
eter over the prior distribution. The probability distribution of the error conditioned on the parameter can be directly used 
to correct likelihood evaluations defined using an additive Gaussian noise model. This approach simplifies the conditional 
dependence of the error on the parameter, leading to unreliable performance as pointed out by Manzoni et al. [61], who 
proposed two alternative error models: one based on radial basis interpolation and the other on linear regression models. 
Cui et al. [62] presented two methods for adaptively constructing error models during posterior sampling using delayed-
acceptance Metropolis–Hastings: one is similar to that of Arridge et al. but with posterior samples, and the other is a zeroth 
order error correction using the error evaluated at the current Markov chain position.

Additionally, correcting errors in neural network surrogates is explored by Yan and Zhou [63] for large-scale Bayesian 
inverse problems. They propose a strategy based on a predictor–corrector scheme using two neural networks. The predictor 
is a deep neural network surrogate of the parameter-to-observable map constructed offline. The corrector is a shallow neural 
network that takes the prediction of the surrogate as input and produces a corrected prediction. The corrector is trained 
using a few model simulations produced during posterior characterization.

1.4. Layout of the paper

The layout of the paper is as follows. Section 2 introduces infinite-dimensional Bayesian inverse problems and their 
numerical solutions in an abstract Hilbert space setting. Section 3 presents the operator learning problem associated with 
neural operator approximation of nonlinear mappings in function spaces. The sources and reduction of approximation errors 
in neural network training are discussed. A result on a priori bound of the error in the posterior distributions of the Bayesian 
inverse problem using the operator learning error is provided and interpreted. Section 4 introduces the residual-based 
error correction problem and discusses its conditional equivalency to a Newton-step problem. Then the error-corrected 
neural operator is proposed, and computational cost analysis for its use as a surrogate for posterior sampling is provided. 
Connections of the error-correction problem to goal-oriented a posteriori error estimation techniques are also taken up in 
the same section. Section 5 provides the physical, mathematical, and numerical settings for the two numerical examples 
of infinite-dimensional Bayesian inverse problems. The empirical accuracy of neural operators and error-corrected neural 
operators at different training data sizes is presented. Posterior mean estimates generated by the model, trained neural 
operators, and neural operators with error correction are visualized and examined to understand the accuracy of posterior 
sampling. The empirical and asymptotic cost analysis results for the posterior sampling are also showcased. The concluding 
remarks are given in Section 6.

2. Preliminaries

This section introduces infinite-dimensional Bayesian inverse problems in an abstract Hilbert space setting. We refer 
to [17,64,65] and references therein for a more detailed analysis and numerical implementation of infinite-dimensional 
Bayesian inverse problems. For general treatments of Bayesian inference problems, see [66,67]. For a reference on probability 
theory in infinite-dimensional Hilbert spaces, see [68]. For references on the formulation and numerical solutions of partial 
differential equations (PDEs), see [69,70].

2.1. Models governed by parametric partial differential equations

Consider a mathematical model that predicts the state u ∈ U of a physical system given a parameter m ∈ M. We assume 
that the model is governed by PDEs, and U and M are infinite-dimensional separable real Hilbert spaces endowed with 
inner products (·, ·)U and (·, ·)M , respectively. The state space U is a Sobolev space defined over a bounded, open, and 
sufficiently regular spatial domain �u ⊂R3. It either consists of functions with ranges in a vector space of dimension ds ≤ 3, 
such as H1(�u; Rds ), or time-evolving functions, such as L2(0, T ; H1(�u; Rds )) with T > 0. The former is appropriate for 
4
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boundary value problems (BVPs), while the latter is appropriate for initial and boundary value problems (IBVPs). We assume 
M consists of spatially-varying scalar-valued functions defined over a set �m ⊂ �u . The parameter m may appear in the 
PDEs’ boundary conditions, initial conditions, forcing terms, or coefficients.

We specify the model as an abstract nonlinear variational problem as follows. Let U0 ⊆ U be a closed subspace that 
satisfies the homogenized strongly enforced boundary and initial conditions of the PDEs. Let the solution set Vu ⊆ U be an 
affine space of U0 that satisfies the strongly enforced boundary conditions and initial conditions that possibly depend on m. 
The abstract nonlinear variational problem can be written as,

Given m ∈ M, find u ∈ Vu such that R(u,m) = 0 ∈ U∗
0 , (1)

where R : U ×M → U∗
0 is a residual operator associated with the variational form, and U∗

0 is the dual space of the space of 
test functions U0. We assume that the residual operator is possibly nonlinear with respect to both the parameter and state, 
and the nonlinear variational problem has a unique solution for any m ∈ M. As a result, we can define a solution operator 
F :M → Vu , or the forward operator, of the model, i.e.,

R(F(m),m) ≡ 0 ∀m ∈ M . (2)

2.2. Infinite-dimensional Bayesian inverse problems

Let y ∈ Rny denote a set of discrete and noisy observations of the physical system described by the state u ∈ U . We 
assume that the state u and observations y are connected via a possibly nonlinear observation operator B : U →Rny and a 
linear additive noise model,1

y = B(u) + n , (3)

where n is an unknown noise vector that corrupts the observed data. We assume it is a realization of a random vector N
with a probability distribution of νN and density of πN .

Under the Bayesian framework of inverse problems, the model parameter is considered epistemically uncertain and a 
M-valued random function denoted by M . Its probability distribution νM , called the prior distribution, incorporates our prior 
knowledge of the parameter. This leads to the following data model,

Y = (B ◦F)(M) + N , M ∼ νM , N ∼ νN , (4)

where the data is considered a random vector Y due to the influence of the measurement uncertainty and parameter 
uncertainty, represented by N and M , respectively. In the context of the Bayesian inverse problem, the forward operator F
is also referred to as the parameter-to-state map.

Given a particular set of observed data y∗ , the goal of the Bayesian inverse problem is to construct or sample from the 
distribution of the parameter conditioned on the observed data y∗ , or the posterior distribution, denoted by νM|Y (·|y∗). The 
posterior and prior are related via the likelihood function, L(·; y∗) :M →R+ , according to Bayes’ rule,

dνM|Y (·|y∗)
dνM

(m) = 1

Z(y∗)
πN

(
y∗ − (B ◦F)(m)

)︸ ︷︷ ︸
=:L(m;y∗)

a.s. , (5)

where dνM|Y (·|y∗)/ dνM is the Radon–Nikodym derivative of the posterior distribution with respect to the prior distribution, 
and Z(y∗) :=EM∼νM [L(M; y∗)] is the marginal likelihood or model evidence. The likelihood function evaluated at m ∈ M
returns the probability of observing y∗ at m under the assumptions of the data model in (4). Each evaluation of the 
likelihood function requires solving the model, i.e., evaluating the forward operator. The resulting posterior distribution 
encodes the additional knowledge of the parameter based on the information of the physical system contained in the 
observed data.

The prior is often defined as a Gaussian measure νM :=N (mpr, Cpr), where mpr ∈M is the mean and Cpr :M ×M →R
is a covariance operator. The covariance operator can be defined using an inverse elliptic operator with a Robin boundary 
condition, which can be expressed in the strong form as

Cpr =
{

(−α∇ · �∇ + β)−d in �,

�n · ∇ + γ on ∂�,
(6)

where n is the outward normal vector, and the negative exponent d is chosen sufficiently large to ensure bounded pointwise 
variance of the covariance operator and the well-posedness of the Bayesian inverse problem. The hyperparameters of the 

1 Alternatives to the linear additive noise model, such as a multiplicative noise model or a mixture of both, do not affect the error correction approach 
introduced in this work. See, e.g., [71] for investigations of alternative noise models.
5
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prior, namely, α, β, d, �, γ , control its properties. For �m with a dimension larger than one, i.e., M is a Gaussian random 
field, the orthonormal matrix � controls the anisotropy, and if � is the identity matrix, one has isotropic random fields. 
The parameters α and β together control the random function’s pointwise variance and correlation length. Finally, the value 
of γ ∝ √

αβ is often chosen to minimize boundary artifacts.

Remark 1. Here we distinguish between the physical parameter, denoted as p ∈ M, and the model parameters m ∈M that 
is ignored in the description above. While the physical parameter is often the target for inversion, they may have additional 
constraints so that the solution operator defined by the map between the physical parameter and model solution is only 
well-defined in a subset D ⊂ M. If the uncertain physical parameter P ∼ νP = N (mp, Cp) follows a Gaussian distribution 
and is used as the prior distribution in (5), then the condition νP (D) = 1 for the well-posedness of Bayesian inverse 
problems might not be satisfied. If this is the case, such constraints can be enforced by introducing a deterministic coupling 
of the physical parameter with the model parameter using a smooth function ψ such that ψ(M) ⊆ D and

P = ψ(M) , M ∼ N (mpr,Cpr) . (7)

For example, if P is strictly positive, such as the thermal conductivity field and Young’s modulus in Section 5, then ψ(·) :=
exp(·) is typically used. Under this assumption, we can formulate Bayesian inverse problems based on a well-understood 
Gaussian prior distribution, from which we can easily produce numerical samples. On the other hand, it is often the case 
that one has prior knowledge on P but not M; thus, this assumption requires designing suitable ψ , mpr, and Cpr to reflect 
our uncertainty in P .

2.3. Numerical solutions of Bayesian inverse problems

We consider a finite-dimensional approximation of the abstract Bayesian inverse problem introduced above. We start 
from a finite-dimensional approximation of the function spaces U and M, denoted by Uh ⊂ U and Mh ⊂ M, respectively. 
The finite-dimensional approximation of M is accomplished by a Galerkin approximation using a set of basis functions 
{ψ j ∈ M}dm

j=1. For the state u defined over �u , e.g., H1(�u; Rds ), we assume a similar approximation using a set of basis 

functions {φ j ∈ U}dg

j=1 with typically a consistent discretization. For a time-evolving Sobolev space, additionally, a time 
discretization 0 = t1 < t2 < · · · < tdt = T is required, and a discrete-time integration rule needs to be specified. We use 
du = dgds for BVPs and du = dgdtds for IBVPs to represent the total degrees-of-freedom of Uh .

The residual R(u, m) can be estimated using numerical techniques such as the finite element method, with particular 
choices of the basis, test space discretization, and functional evaluations. The forward operator evaluations can then be 
numerically computed using iterative methods for nonlinear equations, such as fixed point iteration. We denote the forward 
operator associated with a computer simulation of the model as Fh :Mh → Uh .

The nonlinear Bayesian inverse problem can be solved numerically with a combination of the approximated forward 
operator Fh , the prior νh

M represented in the finite-dimensional bases, i.e., its samples are in Mh , and a method for 
sampling from the posterior distribution νh

M|Y (|y∗) represented in the finite-dimensional bases. For generating numerical 
results later in Section 5, we restrict ourselves to sampling methods that require the evaluation of the likelihood function 
but not the gradient and Hessian estimates of the posterior that often yield increased computational efficiency.2 Here 
we consider a version of the Markov chain Monte Carlo (MCMC) method called the preconditioned Crank–Nicolson (pCN) 
algorithm [72], a dimension-independent method that is applicable when the likelihood function is of the form:

L(m; y∗) ∝ exp(−�(m)) , (8)

where �(·) : M →R+ is referred to as the potential. One of the examples of such a likelihood function is that of normally 
distributed noise with νN =N (0, C N ) in which case we have

�(m) = 1

2

∥∥y∗ − (B ◦F)(m)
∥∥2

C−1
N

, (9)

where ‖·‖C−1
N

denotes the discrete l2-norm weighted by the inverse of the noise covariance matrix C−1
N . The pCN algorithm 

is described in Algorithm 1. The procedure for evaluating the potential in (9) for BVPs is illustrated in Fig. 1.
MCMC algorithms such as pCN generate Markov chains {m j ∈Mh}nchain

j=1 that are used for further analysis. A large portion 
of the chains must be discarded, or “burned”, as they are influenced by initial samples of the chains that might be far from 
the support of the posterior. Second, the rest of the samples along each chain are correlated to certain degrees, leading 
to a much smaller effective sample size, i.e., the number of independently and identically distributed (i.i.d.) samples from 

2 We acknowledge this is a strong restriction for infinite-dimensional Bayesian inverse problems. The restriction is due to the limitation of neural opera-
tors in a general setting. In most cases, the loss function of neural operator training is uninformed of the gradient of the forward operator, leading to poor 
performances in gradient estimations. See [73] for how to incorporate high-dimensional derivative information in neural operator training.
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Algorithm 1: The preconditioned Crank–Nicolson (pCN) algorithm.

Result: A Markov chain {m j ∈ M}nchain
j=1 with a stationary distribution of νM|Y (·|y∗) defined by (5).

Input : (1) an initial guess m0 ∈ νM , (2) a mixing parameter βpCN ∈ (0, 1)

k = 0;
�0 = �(m0; y∗);
while k < nchain do

Sample from prior, m̂ ∼ νM ;

Generate the proposal parameter, mp =
√

1 − β2
pCNmk + βpCNm̂;

Evaluate the potential, �p = �(mp);
if exp(�k − �p) ≥ r ∼ Uniform([0, 1]) then

mk+1 = mp;
�k+1 = �p;

else
mk+1 = mk ;
�k+1 = �k ;

end
k ← k + 1;

end

Fig. 1. The procedure for numerically evaluating the potential function at a proposed parameter mp ∈ Mh through numerically solving a nonlinear BVP. An 
iterative scheme is often employed to solve the nonlinear BVP until its residual norm is reduced below a given tolerance. A high-dimensional linear system 
is solved within each iteration to reduce the residual norm. For a highly nonlinear BVP, many iterations are required to sufficiently reduce the residual 
norm, making such an iterative process computationally expensive.

the posterior distribution. They are typically much smaller than the actual sample size in the burned Markov chains. For 
problems with highly localized posterior and highly nonlinear PDEs, the computational cost, measured by the total number 
of iterative solves for forward operator evaluations, for generating a given number of effective samples from the posterior 
can be intractably high if performed without introducing advanced algorithmic or numerical techniques.

3. Neural operators and approximation errors

The high computational cost of infinite-dimensional Bayesian inverse problems motivates the development of surrogates
of the forward operator F that are fast-to-evaluate and constructed offline, i.e., before receiving observation data and poste-
rior sampling. Employing surrogate forward operators may lead to a significant speedup of posterior sampling, yet typically 
leads to a trade-off in the accuracy of posterior representations.

In what follows, we introduce the operator learning problems associated with the learning of nonlinear maps between 
function spaces M and U using neural networks, or neural operators, which is appropriate for models based on PDEs 
introduced in Section 2. We review some theoretical and practical aspects of neural operators and their training, focusing on 
sources and reduction of approximation errors of neural operators in the operator learning setting as well as the propagation 
of the approximation error in Bayesian inverse problems.
7
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3.1. Operator learning with neural networks

We consider a general class of operator learning problems, where we wish to determine a nonlinear map F̃w : M → U
parameterized by w ∈W ⊆Rdw such that F̃w is closest to a forward operator F via the following optimization problem:

inf
w∈W J (w) := ∥∥F − F̃w

∥∥
T , (10)

where T is the suitable Bochner space for the forward operator F . It is often defined as

T := Lp(M, νM;U) , ‖G‖L p(M,νM ;U) =
{(

EM∼νM

[‖G(M)‖p
U
])1/p

, p ∈ [1,∞) ,

ess supM∼νM
‖G(M)‖U , p = ∞ ,

(11)

where the choice of p depends on the regularity of the forward operator F . The choice p = 2 is often taken in practice, and 
additional learning of derivatives may be included via generalizing to T = W 1,p(M, νM; U), as in [73].

A neural operator approximates a nonlinear map, such as the forward operator F for PDEs, by “learning” a neural net-
work representation of the map. The neural network takes as its inputs a finite-dimensional representation of the parameter 
m, i.e., the degrees-of-freedom of Mh , and produces output as a finite-dimensional representation of F̃w (m) ∈ Uh through 
a sequence of compositions of nonlinear functions, i.e., activation functions, acting on affine operations. The coefficient 
arrays in the affine operations correspond to the neural network weights w , which are found by solving the operator learn-
ing problem, or training, to be specified later. The choice of affine layers and activation functions decides the architecture 
of the neural operator. Many different architectures are used in practice; typical choices for the affine operations include 
fully-connected dense layers, residual neural networks (ResNets), and convolution layers, while typical activation functions 
include ReLU, sigmoid, tanh, softplus, etc. Neural operators can include additional operations such as Fourier transforms 
[36].

Many classes of neural networks are known to be universal approximators of different classes of functions. Universal 
approximation results for neural operators in [33,35,38,40] establish the following result that we state in a formal and 
generalized way. For a nonlinear mapping G belong to some subset of a Bochner space (T , ‖·‖T ) and any desired error 
tolerance ε > 0, there exists a neural network architecture (e.g. number of layers, breadth, etc.) with weights w† that 
defines an operator F̃w† such that∥∥G − F̃w†

∥∥
T < ε . (12)

Such results establish that complex high-dimensional parametric maps can, in theory, be learned directly via neural networks 
arbitrarily well.

For a candidate neural network architecture, the loss function J can be numerically estimated via sample average 
approximation, leading to the following empirical risk minimization problem, or neural operator training problem, for finite p:

min
w∈W J̃ (w; {m j}ntrain

j=1 ) := 1

ntrain

ntrain∑
j=1

∥∥u j − F̃w(m j; w)
∥∥p
U ,

{(
m j, u j = Fh(m j)

)
|m j ∼ νh

M

}ntrain

j=1
, (13)

where samples of training data are generated prior to the training. In some settings, one may be able to incorporate ad-
ditional information via physics constraints for the optimization problem, perhaps making the optimization problem more 
difficult [41–43,45], but more informed.

For many models for multiscale complex systems, fine discretization may be required to resolve necessary physics, which 
leads to large costs in evaluating the forward operator. In this case, a fundamental issue in neural operator learning arises: 
one is faced with learning very high-dimensional nonlinear maps from limited training data. This issue makes neural opera-
tor learning fundamentally different from typical machine learning due to the limitations of sparse training data. In order to 
address this issue, the input and output spaces of neural operators are often restricted to some finite-dimensional reduced 
bases of M and U . Different architectures of neural operator incorporate different classical reduced basis representations 
such as proper orthogonal decomposition (POD) [33,34,39,40], Fourier representation [36], multipole graph representations 
[37], and derivative sensitivity bases [39,40,73] among others. These reduced basis representations offer a scalable means 
of learning structured maps between infinite-dimensional spaces, by taking advantage of their compact representations in 
specific bases, if such representations exist. From a numerical point of view, this also mitigates direct dependence on the 
possibly enormous degrees-of-freedom du and dm of the discretized state and parameter.

In the case that a sufficiently accurate network operator F̃w† (i.e. specific architecture and weights) in a well-designed 
reduced basis representation is found, one can substitute this surrogate for the forward operator in the likelihood function,

L(m; y∗) �→ L̃(m; y∗) := πN
(

y∗ − (B ◦ F̃w†)(m)
)

, (14)

resulting in significant computational speedups for infinite-dimensional Bayesian inverse problems with models governed 
by nonlinear PDEs; see Fig. 2 for this procedure in contrast to the one using the full PDE model in Fig. 1. We note that the 
8
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Fig. 2. The procedure for numerically evaluating the potential function at a proposed parameter mp ∈ Mh using a trained neural operator F̃w . While 
training a neural operator requires numerically evaluating the PDE solution operator Fh many times for training data generation, using a trained neural 
operator in likelihood evaluations significantly reduces the computational cost required for MCMC sampling of posterior distributions.

same neural operator can also be deployed to accelerate Bayesian inverse problems governed by the same model but defined 
by possibly a variety of different noise models, observation operators, or data, which leads to additional computational cost 
reduction via the amortization of the model deployment in many different problems. Neural operators have also observed 
success in their deployment as surrogates for accelerating so-called “outer-loop” problems, such as inverse problems [36], 
Bayesian optimal experimental design [74], PDE-constrained optimization [75], etc., where models governed by PDEs need 
to be solved repeatedly at different samples of input variables.

The hope with neural operators is that the ability to learn very high-dimensional complex nonlinear parametric maps 
via fast-to-evaluate surrogates provides an alternative approach for making the infinite-dimensional outer-loop problems 
governed by nonlinear parametric PDEs tractable due to the significant reduction in per-iteration costs. In many settings, 
however, sufficient accuracy may be out of reach due to some mathematical and numerical issues inherent to neural network 
construction and training.

3.2. Sources and reduction of the approximation errors

While approximation theories posit the existence of arbitrarily accurate neural networks for operator learning problems, 
reliably realizing them in practice remains a major obstacle in machine learning research. In particular, one often observes 
empirical ceilings in the approximation accuracy of neural operators, typically measured by numerically estimating a relative 
accuracy percentage metric given by

100

⎛⎜⎝1 −
√√√√EM∼νM

[∥∥F(M) − F̃w(M)
∥∥2
U

‖F(M)‖2
U

]⎞⎟⎠ . (15)

The accuracy metric above is often called the generalization accuracy. The empirical accuracy ceiling is often persistently 
observed in the regime where both the error in estimating the loss function (e.g., statistical errors due to finite samples) 
and truncation error (e.g., reduced bases representation) are asymptotically small. This is due to many confounding issues 
that we discuss here in brief.

The universal approximation theoretic understanding is typically disconnected from the way neural operators are con-
structed in practice. Many universal approximation results hinge on density arguments, i.e., certain classes of neural net-
works are capable of approximating, e.g., polynomials or simple functions to arbitrary accuracy. These density arguments 
are then used to tie error bounds to well-known approximation results for the class of functions that neural networks are 
dense in. The theoretical construction of the neural networks used in density arguments may lead to infinitely broad or 
deep networks in the limit [76–80].

In practice, however, neural network performance eventually degrades as the network gets too broad or deep, and thus 
neural operators are not constructed in this way. Instead one has to employ a combination of physical intuition, architecture 
search, and model selection techniques to produce a neural network that will work suitably for the target setting; see, e.g., 
[81,82]. The resulting neural network is then calibrated via an empirical risk minimization on finite sample data using an 
optimizer that searches for local minimizers. The empirical risk minimization problem is typically nonconvex, in which case 
finding global minimizers is NP-hard. The empirical risk minimization problem over finite samples in (13) introduces both 
statistical sampling error, as well as optimization error since the local minimizer may be significantly worse than the global 
minimizer for that particular neural network.

Altogether these different errors lead to a challenging situation where, while neural operators show significant promise in 
learning complex parametric maps from training data up to a certain accuracy, eventually one cannot continue to improve 
the empirical accuracy reliably, contrary to other approximation methods such as the finite element method with hp-
refinement [47,48,83] or surrogate modeling approaches such as polynomial approximation, model order reduction, and 
9
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Gaussian process approximation [49,50,84]. In fact, at a certain point adding more representation power can make the 
approximation worse, and more training data does not improve the generalization accuracy. For a relatively comprehensive 
empirical comparison of some neural operators that demonstrates the diminishing marginal returns described above, see 
recent work by de Hoop et al. in [51].

3.3. Propagation of the approximation errors in Bayesian inverse problems

If one employs a trained neural operator in place of the ‘true’ PDE solution operator in a Bayesian inverse problem, 
the approximation error of the neural operator will lead to errors in the resulting posterior distribution. Depending on the 
conditioning of the particular Bayesian inverse problem of interest, the empirical accuracy ceiling of neural operator training 
might not be sufficient for reaching the accuracy requirement of the Bayesian inverse problem.

Let E ∈ Lp(M, νM; U) be the approximation error of the operator learning problem,

E(m) := F(m) − F̃w(m) , νM -a.e. . (16)

The goal of the following analysis is to find a priori bound on the error in the posterior distribution using the error in the 
operator learning problem, i.e., ‖E‖Lp(M,νM ;U) , and obtain an understanding of the bounding constant, i.e., the conditioning 
of Bayesian inverse problems with respect to the operator learning error. We consider the approximate data random variable 
Ỹ as well as the approximate posterior distribution νM|Ỹ (·|y∗) defined using a learned operator F̃w as follows:

Ỹ = (B ◦ F̃w)(M) + N =⇒ dνM|Ỹ (·|y∗)
dνM

(m) = 1

Z̃(y∗)
πN

(
y∗ − (B ◦ F̃w)(m)

)︸ ︷︷ ︸
=:L̃(m;y∗)

a.s., (17)

where Z̃(y∗) =EM∼νM [L̃(M; y∗)] is the approximate marginal likelihood. The error in the posterior distribution referred to 
as Epost can be represented by the Kullback–Leibler (KL) divergence as follows:

Epost := D K L(νM|Ỹ (·|y∗)||νM|Y (·|y∗)) = EM∼νM|Ỹ (·|y∗)

[
ln

(
dνM|Ỹ (·|y∗)
dνM|Y (·|y∗)

(M)

)]
. (18)

The following theorem suggests that for Bayesian inverse problems with sufficiently well-behaved observation operators 
and normally distributed additive noise, the error in the operator learning problem controls the error of Bayesian inverse 
problems in an abstract Hilbert space setting introduced in Section 2 and Section 3.1.

Theorem 1 (Operator learning errors in Bayesian inverse problems). Assume F , F̃w ∈ Lp(M, νM ; U), p ∈ [2, ∞]. Assume B satisfies

‖(B ◦F)(m)‖2 ≤ cB ‖F(m)‖U ,
∥∥(B ◦ F̃w)(m)

∥∥
2 ≤ c̃B ‖F(m)‖U , νM -a.e. ,∥∥(B ◦F)(m) − (B ◦ F̃w)(m)

∥∥
2 ≤ cL ‖E(m)‖U , νM -a.e. ,

for constants cB , ̃cB > 0 and cL ≥ 0. Assume νN = N (0, C N ) is normally distributed. Assume νM|Ỹ (·|y∗), νM|Y (·|y∗), and νM are 
pairwise equivalent. For a given set of observation data y∗ ∈Rny , we have

Epost ≤ cBIP ‖E‖L p(M,νM ;U) , cBIP = c1 (c2(1) + c3(p)) cL ,

where the constants c1, c2, c3 > 0 are defined by

c1 = 1

2

∥∥∥C−1
N

(
(B ◦F)(·) + (B ◦ F̃w)(·) − 2 y∗)∥∥∥

L p(M,νM ;Rny )
, (19)

c2(p) =
∥∥∥∥exp

(
−1

2

∥∥y∗ − (B ◦ F̃w)(·)∥∥2
C−1

N

)∥∥∥∥−1

Lp(M,νM )

, (20)

c3(p) = c2(1)

c2(q)
∈ [1, c2(1)] , q =

⎧⎪⎨⎪⎩
∞ , p = 2 ;
p/(p − 2) , p ∈ (2,∞) ;
1 , p = ∞ .

(21)

Proof. We only provide a sketch of proof here for p ∈ [2, ∞). The detailed proof is provided in Appendix A. The following 
transformation can be made to Epost

Epost = ln

(
Z(y∗)
Z̃(y∗)

)
︸ ︷︷ ︸

A©
+ 1

Z̃(y∗)
EM∼νM

[
ln

(
L̃(M; y∗)
L(M; y∗)

)
L̃(M; y∗)

]
︸ ︷︷ ︸

B©
.

10
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We seek to bound the two terms. By applying Cauchy–Schwarz inequality and Minkowski inequality, we have∥∥� − �̃
∥∥

L p∗
(M,νM )

≤ c1cL ‖E‖L p(M,νM ;U) , p∗ ∈ [1, p/2] ,
c1 ≤ 1

2

∥∥∥C−1
N

∥∥∥
2

(
cB ‖F‖L p(M,νM ;U) + c̃B

∥∥F̃w
∥∥

L p(M,νM ;U)
+ 2

∥∥y∗∥∥
2

)
< ∞ ,

where �(m), �̃(m) are the potentials defined with F , F̃w as in (9). Using Jensen’s, Hölder’s, and Minkowski inequalities, 
we have

c2(1)−1 ≥ exp

(
−1

2

∥∥∥C−1
N

∥∥∥
2

(∥∥y∗∥∥
2 + c̃B

∥∥F̃w
∥∥

L p(M,νM ;U)

))
> 0 ,

where c2 = c2(p) as a function of p is defined in (19). The second term in Epost can be bounded by the following term 
using Jensen’s and Hölder’s inequalities:

B© ≤ c3(p)
∥∥� − �̃

∥∥
L p∗

(M,νM )
≤ c1c3(p)cL ‖E‖L p(M,νM ;U) .

The term involving normalization constants can be bounded using inequalities log(1 + x) ≤ x , ∀x ≥ 0, |e−x1 − e−x2 | ≤ |x1 −
x2| , ∀x1, x2 ≥ 0, and Hölder’s inequality,

A© ≤ c2(1)
∣∣EM∼νM

[
exp(−�(m)) − exp(−�̃(m))

]∣∣
≤ c2(1)

∥∥� − �̃
∥∥

L p/2(M,νM )
≤ c1c2(1)cL ‖E‖L p(M,νM ;U) .

Therefore, the bound Epost ≤ cBIP ‖E‖Lp(M,νM ;U) holds for cBIP = c1 (c2(1) + c3(p)) cL . �
Remark 2. Conditions under which the equality sign holds in the error bound in Theorem 1: the observation operator is 
linear and the operator learning error E is in the kernel of B, i.e., (B ◦ E)(m) = 0, νM -a.e., and model discrepancy does 
not pollute the predicted observation. In this case, cL = 0 and the equality holds with Epost = 0; see [85] for a detailed 
discussion.

We note that the constants c1 and cL are associated with the error in the evaluation of the potential as defined in (9), 
while c2 and c3 are associated with the error in the evaluation of the marginal likelihood. The magnitude of the bounding 
constant is, generally speaking, dictated by the magnitude of the data misfit term 

∥∥y∗ − ypred
∥∥

C−1
N

, with ypred being the pre-

dicted data, over the prior distribution for both the model and the surrogate. This constant is large for challenging Bayesian 
inverse problems that have uninformative prior, high-dimensional data, small noise corruption, or inadequate models. In 
these cases, the posterior distributions are typically highly localized and/or much different than the prior distributions. This 
is somewhat expected as neural operators are trained with data generated from prior distributions, and the performance 
of neural operators is likely to deteriorate when posterior sampling is concentrated in areas of the parameter space where 
training samples are relatively sparse. Additionally, Bayesian inverse problems are susceptible to the approximation error 
originating from overfitting to training samples, regardless of whether they adequately resolve the region of the parameter 
space with high likelihood values.

This result implies that significant magnification of the approximation error, when propagated through challenging 
Bayesian inverse problems, is likely. It further implies that the empirically observed accuracy ceiling for neural operator 
training might not be sufficient for the accuracy requirements of these types of Bayesian inverse problems. We note that 
this is often not the case for conventional surrogate modeling techniques, for which similar results are derived with the 
additional assumption that the error in Bayesian inverse problem solutions generated via a surrogate model asymptotically 
diminishes due to the asymptotic diminishing of the surrogate approximation error as ntrain → ∞; see [84,86–88].

4. Residual-based error correction of neural operator predictions

Methods for estimating error, and subsequently correcting the error, in approximations of solutions to the forward prob-
lems fall into the category of a posteriori error estimation and typically involve computing residuals representing the degree 
to which approximate solutions fail to satisfy the forward problems; i.e., residuals evaluated at the approximate solutions. 
In this section, we propose a strategy, following earlier works on a posteriori error estimation techniques in [52,54], that 
enhances the application of neural operators in infinite-dimensional Bayesian inverse problems using the PDE residual.

In particular, we ask, given a neural operator prediction F̃w (m) ∈ U at m ∈ M that is reasonably close to the true 
solution F(m) ∈ Vu , if it is possible to cheaply compute a corrected solution, uC ∈ Vu , that has a significantly smaller 
approximation error, so that the mapping m → uC (m) can more reliably achieve the accuracy requirements for deployment 
in Bayesian inverse problems. It turns out that if the residual operator R as in (1) has a sufficiently regular derivative, a 
correction can be computed by solving a linear variational problem based on R at F̃w (m), and this correction may lead to 
quadratic error reduction. For highly nonlinear problems, computing one correction step is inexpensive relative to evaluating 
the forward operator; thus this approach retains substantial speedups for Bayesian inverse problems.
11
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In what follows, we first introduce the linear variational problem associated with the error correction. We show that it is 
a Newton step under some conditions, and thus the Newton–Kantorovich theorem can be directly applied to understand the 
error reduction. Then an application of this general procedure for neural operators is discussed. We discuss the possibility 
of conditions on the approximation error of a trained neural operator that ensures global quadratic error reduction of 
the correction step. Next, we make a connection between the error correction problem and a posteriori error estimation 
techniques for estimating modeling error. Lastly, an analysis of the computational cost of MCMC sampling of the posterior 
using an error-corrected neural operator is given.

4.1. The residual-based error correction problem

Consider an expansion of the residual operator R in the state space U , assuming for now that R is at least twice 
differentiable with respect to the state variable. For an arbitrary pair (u, m) ∈ U ×M, the first and second order derivatives 
with respect to the state variable, δuR(u, m) : U → U∗

0 and δ2
uR(u, m) : U ×U → U∗

0 , are given by,

δuR(u,m)v = lim
θ→0

1

θ
(R(u + θ v,m) −R(u,m)) , ∀v ∈ U ,

δ2
uR(u,m)(v,q) = lim

θ→0

1

θ
(δuR(u + θq,m)v − δuR(u,m)v) , ∀v,q ∈ U .

(22)

The Taylor series expansion of R(F(m), m) in terms of u involving up to second-order derivative of R is given by

R(F(m),m)︸ ︷︷ ︸
=0

= R(u,m) + δuR(u,m)(F(m) − u)

+
1∫

0

δ2
uR(u + s(F(m) − u),m)(F(m) − u,F(m) − u)(1 − s)ds.

(23)

In the regime where the higher order terms are small, such as where ‖F(m) − u‖U is small, the following approximation 
can be made

δuR(u,m)F(m) = −R(u,m) + δuR(u,m)u + O (‖F(m) − u‖2
U )

≈ −R(u,m) + δuR(u,m)u .
(24)

This leads to the following linear variational problem, which we refer to as the residual-based error correction problem, to 
compute the new estimation uC of F(m) given an initial estimation u ∈ U :

Given m ∈ M and u ∈ U, find uC ∈ Vu such that δuR(u,m)uC = −R(u,m) + δuR(u,m)u . (25)

Assuming the existence of a unique solution to this linear variational problem under Lax–Milgram theorem [89, pg. 310], 
solving this problem is equivalent, under some additional conditions, to generate a single Newton iteration for the nonlinear 
equation (1) reformulated as

Given m ∈ M, find v ∈ U0 such that R̃(v,m) = 0 , R̃(v,m) := R(v + uL,m) , (26)

for a given3 uL ∈ Vu . The Newton iteration {v j ∈ U0}∞j=0 is given by

v j+1 = v j − δvR̃(v j,m)−1R̃(v j,m) , j > 0 . (27)

Consider one Newton step with u − uL − u⊥ , where U⊥
0 is the orthogonal complement of U0, and u⊥ is the orthogonal 

projection of u − uL to U⊥
0 .

vC = u − uL − u⊥ − δvR̃(u − uL − u⊥,m)−1R̃(u − uL − u⊥,m) .

The equivalency vC = uC − uL can be established when, for example, (i) U = U0 = Vu , (ii) u ∈ Vu , i.e., u has the correct 
strongly enforced boundary and initial conditions with u⊥ = 0, or (iii) R(u +U⊥

0 , m) ≡R(u, m), i.e., the residual operator is 
invariant to changes in the strongly enforced boundary and initial conditions of u.

3 The so-called lifting function uL is simply a part of the mathematical construction of boundary value problems. It allows us to weakly formulate certain 
PDEs in symmetric form (i.e., the trial and test spaces are the same) under strongly enforced boundary conditions. A lifting function exists due to the 
surjective trace operator γ0 : Hs(�) onto→ Hs−1/2(∂�) for any s > 1/2 [69], and a strongly-enforced boundary condition is often specified using an element of 
Hs−1/2(∂�). While, in theory, one can explicitly find a lifting function uL ∈ Hs(�) for a given strongly enforced boundary condition, it is not necessary for 
the analysis and numerical implementation in this work.
12
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Fig. 3. The procedure for numerically evaluating the potential function at a proposed parameter mp ∈ Mh using a trained neural operator with error 
correction F̃w . By evaluating the likelihood function using the solution to a linear error correction problem based on the prediction of a trained neural 
operator, we expect the evaluation to be much more accurate than using merely the neural operator prediction. This accuracy improvement comes with a 
price: one has to solve a high-dimensional linear system at each likelihood evaluation. However, this computational cost is mild compared to the iterative 
solve shown in Fig. 1.

If the equivalency between the Newton step problem and the error correction problem can be established, the latter can 
be understood in the setting of the Newton–Kantorovich theorem in Banach spaces; see, [89,90] and references therein. The 
theorem gives sufficient conditions for the quadratic convergence of a Newton iteration starting at u for solving the fixed 
point problem associated with (26). It implies that within a regime in which u is sufficiently close to F(m), the solution to 
the error correction problem is guaranteed a quadratic error reduction, i.e.,

‖F(m) − uC ‖U ≤ c ‖F(m) − u‖2
U (28)

for some constant c > 0. Consequently, we expect uC to have a much smaller error than u in such a regime.
We remark that in the rare cases where the equivalency of the two problems cannot be established, one may still retain 

the conditional quadratic error reduction property for the error correction problem, but perhaps with stronger conditions 
than those stated by the Newton–Kantorovich theorem. This situation may arise in practice, for example, when both con-
ditions for equivalency suggested above fail, and the numerical implementation of the orthogonal projection from U to Vu

is not straightforward. The stronger conditions for quadratic error reduction should incorporate additional sensitivity factors 
for when the initial position of a Newton iteration orthogonally deviates from the domain of the Jacobian operator of the 
nonlinear system.

4.2. Correcting neural operator predictions: global quadratic reduction of approximation error

For well-designed and well-trained neural operators, we expect they are within the regime where the approximation 
error is small. However, in such a regime, the reduction of the approximation error via neural network construction or 
training is ineffective, as discussed in Section 3.2. On the other hand, solving a residual-based error correction problem 
returns a significant reduction in approximation error that may not be reliably achieved in the training phase of neural 
operators. This reduction of the approximation errors may lead to crucial improvements in the quality of the solutions 
to Bayesian inverse problems accelerated by neural operators. To this end, we consider the following linear problem that 
returns a neural operator with error correction F̃C :M � m �→ uC ∈ Vu :

Given m ∈ M, find uC ∈ Vu such that

δuR(F̃w(m),m)uC = −R(F̃w (m),m) + δuR(F̃w(m),m)F̃w (m),
(29)

i.e., we let u = F̃w (m) in (25). The mapping F̃C is then used in likelihood evaluations at m for solving Bayesian inverse 
problems:

L(m; y) �→ L̃C (m; y∗) := πN(y∗ −B(F̃C (m))) . (30)

See Fig. 3 for this procedure in contrast to the ones in Figs. 1 and 2.
Next we discuss a sufficient condition on the approximation error of a trained neural operator for global quadratic error 

reduction via the error correction problem. Under the framework of the Newton–Kantorovich theorem, if the following two 
conditions are satisfied at states that are nearby F̃w (m) for all m ∈ M: (i) the neural operator error correction problems 
13
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have unique solutions under the Lax–Milgram theorem, and (ii) the residual derivative is locally Lipschitz continuous with 
respect to the state variables, then for F ∈ L∞(M, νM ; U) there exists a global convergence radius upper bound rC > 0 that 
depends on the properties of R such that

‖E‖L∞(M,νM ;U) < rC =⇒ ‖EC ‖L∞(M,νM ;U) ≤ cR ‖E‖2
L∞(M,νM ;U) , (31)

where EC (m) := F̃C (m) −F(m), νM -a.e., and cR > 0 is a constant. We state the full form of this corollary in Appendix B.
We note that even though the global convergence radius upper bound is enforced in the L∞ Bochner norm, which may 

not be compatible with the operator learning setting, the global quadratic error reduction is observed in practice for neu-
ral operators trained in the L2 Bochner norm with pre-asymptotic accuracy; see, e.g., Fig. 5 and Fig. 12 in our numerical 
examples to be specified in Section 5. We expect that these results are natural consequences of the reduced basis represen-
tation built into the neural operator architectures, in which the operator learning problem can be essentially represented 
in finite-dimensional coefficient spaces, even though the optimization is typically performed in the L2(M, νM ; U) topology. 
Moreover, when the global convergence radius upper bound is small, trained neural operators with pre-asymptotic accuracy 
may not be sufficient for a guaranteed global quadratic error reduction via error correction. In these cases, performance-
improving techniques for neural operator construction and training can be crucial. Even though these techniques may not 
produce neural operators with arbitrary accuracy, they may be able to reduce the approximation error so that its norm 
is smaller than the global convergence radius upper bound for a guaranteed quadratic error reduction according to the 
Newton–Kantorovich theorem.

Remark 3. Here we briefly discuss the limitation of the proposed strategy for error reduction in likelihood evaluations. 
First, to formulate the error correction problem in (25) using the residual derivative, we require the residual operator R to 
be Fréchet differentiable with respect to the state variable near F̃(m) over the prior distribution. Second, if the posterior 
distribution happens to concentrate on the region of the parameter space where the radius of convergence around F(m)

for the Newton iteration is very small, the residual-based error correction may lead to overall worse likelihood evaluations 
during posterior sampling due to the possible divergence of the Newton iteration. In this situation, the sampling-based error 
correction strategies introduced in Section 1.3 could be superior in the consistency of error reduction, particularly when the 
marginal cost (e.g., generating more training data) of improving the generalization accuracy of a neural operator is high. The 
computational cost of the proposed strategy is discussed in Section 4.4.

4.3. Connection to goal-oriented a posteriori error estimation

The procedure we described to correct the predictions of a trained neural operator is based on the estimation of modeling 
error using the goal-oriented a posteriori error estimates that provide computationally inexpensive estimates of the error in 
the quantities of interests (QoIs), see [52–59,91–94]. Originally, a goal-oriented error estimation technique was developed 
[53,55,57,91–93] to perform mesh adaption based on the specific measure of error – error in QoIs – as opposed to the 
energy norm. Techniques were developed to adapt the mesh to control the error in QoIs which is not necessarily possible 
by relying on the energy norm. It was soon realized that goal-oriented error estimates can be used to estimate the modeling 
error – error in predictions via the fine (high-fidelity) and coarse (low-fidelity) models – further expanding the utility of 
the technique; see [52,54]. Here we briefly cover the topic of estimation of modeling error to relate to the development in 
previous subsections.

Suppose u ∈ U is a solution to the variational problem, R(u) = 0 ∈ U∗ , assuming test and trial spaces are the same 
for simplicity, and p ∈ U is the solution to the dual problem: −〈δuR(u)v, p〉 = 〈δuQ(u), v〉 ∀v ∈ U , where 〈·, ·〉 denotes a 
duality pairing between U∗ and U . Here Q : U → R is a differentiable QoI functional. For any arbitrary functions ũ, ̃p ∈ U
the following holds,

Q(u) −Q(̃u) = 〈R(̃u), p〉 + r(u, p, ũ, p̃) ≈ 〈R(̃u), p〉, (32)

where r is the remainder term involving derivatives of residual and errors in forward and dual solutions, e = u − ũ and 
ε = p − p̃, respectively. When e and ε are sufficiently small, r can be ignored. We note that several versions of such 
estimates as the equation above can be derived; see [54]. While estimates like the above provide an approximation of the 
QoI error, they still require access to the pair of the forward and dual solutions, (u, p). Because u can be written as u = ũ +e, 
if the error e can be approximately computed, referring to the approximation of e by ê, then u can be approximated using 
u ≈ ũ + ê. The approximation ê of the error e can be obtained by solving the following linear variational problem:

Find ê ∈ U such that δuR(̃u)ê = −R(̃u) ∈ U∗ . (33)

The same steps can be used to also compute p approximately following the discussion in the earlier references.
The above problem is formally derived via the linearization of the nonlinear variational problem similar to the one 

presented in Section 4.1. The steps discussed above are somewhat similar to estimating the error uC − F̃w (m) ≈ F(m) −
F̃w (m) given a neural operator prediction F̃w (m) proposed in Section 4.2. However, one needs to also consider the error 
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in U⊥ for when U0 ⊂ U , as the neural operator prediction u may not satisfy the strongly enforced boundary or initial 
conditions. Note that the error correction problem is essentially an extended error estimation problem, where one solves 
for the error in the affine space U0 − ũ, thus similar to an error estimate that includes the error of ̃u at those boundaries.

4.4. Discussion of computational costs

In this subsection, we briefly discuss the computational costs when the error-corrected neural operator is deployed as 
a surrogate of the forward operator in Bayesian inverse problems, in particular the expected computational speedups in 
MCMC sampling of the posterior. The neural operator construction and training have offline costs due to training data 
generation, building or finding appropriate architecture, and training the neural operator. The cost of generating training 
data is the same as the cost of solving the PDEs and sampling from the prior; here we neglect the cost due to the latter. 
The additional computation may be required for finding reduced bases that involve expectations, as is done in the network 
strategies discussed in [39,40], which we use in our numerical examples presented in Section 5. The cost of constructing 
an appropriate architecture is more abstract, since this procedure may involve repeating many different training runs for 
different architectural hyperparameters.

In the case that reduced basis neural operator methods are used, the training cost can be made independent of the 
discretization dimensions dm, du , and instead be made to scale with the dimension of the reduced bases, since in this case 
the training data can be projected into these bases in a pre-training step. For this reason, the cost of neural network training 
can be ignored asymptotically for very high-dimensional discretization. We note that neural network training may represent 
a significant cost in the pre-asymptotic regime, i.e. on the order of the cost of training data generation, depending on the 
type of architecture used and the number of iterations required to train a sufficiently accurate neural operator.

The cost of posterior sampling to acquire a Markov chain of size nchain, according to our settings in Section 2.2, is dictated 
by the cost of solving the governing PDEs for likelihood evaluations. The total cost is a sum of the online posterior sampling 
cost and the offline cost:

Total Cost = (nchain × Evaluation Cost) + Offline Cost . (34)

The speedups realized in practice by using a neural operator are measured by the ratio of the total cost of MCMC sampling 
using the forward operator to the total cost of MCMC sampling using a neural operator,

SpeedupN O = (nchain × CostP D E)

(nchain × CostN O ) + Offline Cost
. (35)

In the regime where a large number of likelihood evaluations are required for generating a Markov chain of length 
nchain, the offline cost of neural operator training is likely negligible in relation to the online cost of posterior sampling. 
Assuming the acceptance rates are the same for Markov chains generated by the forward operator with a neural operator 
as its surrogate, the speedup of the neural operator asymptotically becomes the ratio between the averaged evaluation cost 
for the forward operator and the neural operator over the posterior distribution.

Asymptotic SpeedupN O ≈ CostP D E

CostN O
. (36)

In general, the cost ratio of the PDE solves to the neural operator can be very high for highly nonlinear PDEs with fine 
discretization, i.e., large du and dm , particularly if the neural network architecture is designed to be invariant to the dis-
cretization dimensions.

When a neural operator with error correction is used as a surrogate of the forward operator in posterior sampling, the 
asymptotic speedup is approximately equal to the number of iterations, denoted as Nnonlinear, within a given iterative scheme 
for nonlinear equations used for evaluating the forward operator, averaged over the posterior distribution. We assume a 
linear problem of a similar size and numerical properties to the error correction problem is solved at each iteration. Under 
this assumption, we may assume that an error correction step and a linear solve within the iterative scheme have a similar 
computational cost. Therefore, the asymptotic speedup is given by

Asymptotic SpeedupEC N O = CostP D E

CostN O + CostEC
≈ Nnonlinear × CostEC

CostN O + CostEC
≈ Nnonlinear . (37)

The proposed method thus yields favorable speedups for models governed by highly nonlinear PDEs with fine discretization, 
where evaluating the forward operator requires many iterative solves, and the posterior sampling requires many queries of 
the forward operator.

5. Numerical examples

In this section, we demonstrate through numerical examples how the residual-based error correction both improves the 
accuracy of posterior representations of challenging Bayesian inverse problems relative to using a trained neural operator 
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alone, and offers a computational advantage over directly using the expensive forward model in likelihood evaluations. 
The first example concerns inferring the uncertain coefficient field in a nonlinear reaction–diffusion problem with a cubic 
reaction term. The second example involves the inference of Young’s modulus as a spatially-varying uncertain field for a 
hyperelastic neo-Hookean material undergoing deformation. For each of the two examples, we generate samples from the 
posterior distributions for likelihood functions defined using (i) model predictions, (ii) predictions by three trained neural 
operators whose measured accuracy is close to the ceiling for a given architecture with an increasing number of training 
samples, and (iii) error-corrected predictions of these neural operators. We visualize and compare the accuracy of their 
posterior predictive means and analyze the computational cost.

In what follows, we first discuss the neural operator architecture and training as well as the software used in our 
calculations. Then the physical, mathematical, and numerical settings of the two examples are provided. Lastly, we present 
the visualization of posterior predictive means and cost analysis.

5.1. Derivative-informed reduced basis neural operator

We consider a derivative-informed reduced basis neural network [39,40,95] for constructing neural operators in the two 
numerical examples. This neural network architecture uses both derivative and principal information of the solution map 
to construct appropriate reduced bases for the inputs and outputs. This strategy exploits the compactness of the forward 
operator, if it exists, to construct a parsimonious and mesh-independent neural network approximation, making it a suitable 
strategy for learning discrete representations of mappings between function spaces. The input reduced basis uses derivative 
information to detect subspaces of the inputs that the outputs are most sensitive in expectation over νM . The output reduced 
basis is proper orthogonal decomposition (POD), an optimal linear basis for learning operators in the L2 norm [96,97]. The 
neural operator learns a nonlinear coefficient mapping between the two subspaces via an adaptively constructed and trained 
ResNet [40]. These networks provide a reliable way of detecting appropriate breadth for a map by detecting useful bases 
directly from the map instead of during neural network training. The adaptive training adds layers in a way that only 
marginally perturbs the existing coefficient mapping, allowing one to adaptively detect appropriate nonlinearity (depth) 
until overfitting is detected. We only consider this network since it gives a good practical performance, outperforming other 
conventional reduced basis strategies and overparametrized networks, while suffering from the same limitations that are 
typical of neural operators in general: limitations in achieving high accuracy given more data, and approximation power. It 
is thus general enough to demonstrate the efficacy of our proposed method.

For both numerical examples, we use networks with reduced basis dimensions of 50, and 10 nonlinear ResNet layers, 
each with a layer rank of 10, and softplus activation functions. The networks are trained and constructed adaptively, one 
ResNet layer at a time, using the Adam optimizer with a learning rate of 10−3, and gradient batch size of 32. Each adaptive 
layer training problem executes 100 epochs, starting from 2 layers to 10, with one final end-to-end training, accounting for 
a total of 1000 epochs. The efficacy of this adaptive approach is demonstrated in [40]. The networks are trained for varying 
availability of training data, which are reported when appropriate. For both problems, a derivative sensitivity basis of rank 
50 is computed via samples using matrix-free randomized algorithms,

EM∼νM

[
δF∗(M)δF(M)

]≈ 1

nsample

nsample∑
j=1

δF∗(m j)δF(m j) , (38)

where δF∗(·) denotes the adjoint of the derivative of F . In both cases, nsample = 256 samples are used, and the additional 
computational costs are taken into account when computing the offline cost of neural operators. The matrix-free actions of 
δF∗(M)δF(M) only require solving linearized PDEs similar to that of the error correction problem and can be computed at 
training data sample points, thus ensuring a reasonable computational efficiency of the matrix-free action evaluations.

Remark 4. Unlike [40], we do not employ the additional stochastic Newton optimizer [98,99] since this is not typically used 
in neural operator learning. However, we observe substantially the performance improvement of neural operators trained 
with this optimizer. Moreover, unlike [73] this network does not include derivative approximations during the formulation 
of the operator learning problem and training, and the derivative information is only used in the architecture. For more 
information on the neural network architectures employed in the two numerical examples, see [39,40].

5.2. Software

The following software is used to implement the numerical examples: FEniCS [100] for finite element method, hIPPYlib 
[101] for prior and posterior sampling, and hIPPYflow [102] in combination with TensorFlow [103] for neural operator 
construction and training. We note that the derivative of the residual operator is implicitly derived and implemented using 
the automatic differentiation of weak forms supported by FEniCS and Unified Form Language (UFL) [104].
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Fig. 4. Visualization of the prior samples, model solutions, and neural operator performance with and without error correction for the reaction–diffusion 
problem introduced in Section 5.3. From left to right, we have (i) three Gaussian random fields, m j , j = 1, 2, 3, sampled from the prior distribution νM with 
approximately a pointwise variance of 1 and correlation length of 20% of the domain size length, each occupies a row, (ii) the corresponding coefficient 
field samples, κ j , defined by κ j = exp(m j), (iii) the corresponding finite element solutions of the reaction–diffusion problem, Fh(m j), (iv) the absolute 
prediction errors at m j for the best performing neural operator (∼ 90% accurate as shown in Fig. 5), |Fh(m j) − F̃w (m j)|, and (v) the absolute errors at m j

for the error-corrected predictions based on the best performing neural operator. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

5.3. Inferring a coefficient field of a nonlinear reaction–diffusion problem

Here we introduce the setting for a demonstrative Bayesian inverse problem. The model is governed by an equilibrium 
reaction–diffusion equation with a nonlinear cubic reaction term. The model solutions are driven by the Dirichlet boundary 
conditions at the top and bottom of the square domain � = (0, 1)2 and the coefficient field κ : � →R+:

−∇ · κ(x)∇u(x) + u(x)3 = 0, x ∈ � ; (39a)

κ(x)∇u(x) · n = 0, x ∈ �l ∪ �r ; (39b)

u(x) = 1, x ∈ �t ; (39c)

u(x) = 0, x ∈ �b , (39d)

where �t , �r , �b , and �l denote the top, right, bottom, and left boundary of the domain, and n is the outward normal vector. 
We assume prior knowledge of an epistemically uncertain and spatially-varying coefficient field K : � → R+ , following a 
log-normal prior distribution:

K = exp(M) , M ∼ νM := N (0,Cpr) , (40)

where M is the parameter random variable through which we represent the uncertainty in κ . The prior distribution νM

is specified with a covariance constructed according to (6) with hyperparameters of d = 2, α = 0.08, β = 2, and � = I . 
They correspond to isotropic Gaussian random fields with a pointwise variance of approximately 1, correlation length of 
approximately 0.2, and small boundary artifacts. We visualize several samples of the prior as well as their corresponding 
coefficient fields and model solutions via the finite element method, to be specified later, in Fig. 4.

We consider the following parameter space, state space, and solution set for the nonlinear PDE problem above:

M := L2(�) , U := H1(�) ,

U0 := {u ∈ H1(�) : u|�b = 0 and u|�t = 0} , Vu := {u ∈ H1(�) : u|�b = 0 and u|�t = 1} ,
(41)

where the restriction to the boundary is defined with the trace operator. The function spaces are equipped with the Sobolev 
norm. The variational problem for the model is given by:
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Fig. 5. A study of the generalization accuracy, as defined in (15), of 7 neural operators trained using a varying number of training samples for the nonlinear 
reaction–diffusion problem. The neural operators are constructed using a derivative-informed projected ResNet; see Section 5.1 for its construction and 
training details. Generalization accuracy is computed using 512 data unseen during training. An empirical accuracy ceiling of ∼ 90% is reached for the given 
neural network architecture.

Given m ∈ M, find u ∈ Vu such that

〈R(u,m), v〉 :=
∫
�

exp(m)∇u(x) · ∇v(x) dx +
∫
�

u(x)3 v(x) dx = 0 , ∀v ∈ U0 . (42)

5.3.1. Numerical approximation and neural operator performance
The numerical evaluation of the forward operator, Fh , sampling of the prior distribution, νh

M , and the residual-based error 
correction problem is implemented via the finite element method. In particular, the domain � is discretized with 64 × 64
cells of uniform linear and parabolic Lagrangian triangular elements that form the finite element spaces Mh ⊂ M and 
Uh ⊂ U , respectively. The state finite element space has du = 16641 degrees of freedom, and the parameter finite element 
space has dm = 4225. The variational problems of the model, prior sampling, and error correction are then approximated 
and solved in these finite element spaces. We employ the Newton iteration for solving the nonlinear reaction–diffusion 
problem, which takes an average of 2.5 iterations to converge for parameter samples generated from the prior distribution.

Applying neural operator construction and training specified in Section 5.1 to the reaction–diffusion problem, we pro-
duced 7 neural operators using increasing number of training samples, ntrain = 100, 201, 403, 806, 1382, 3225, 6912, 
assuming p = 2 in the Bochner norm. In Fig. 5, the accuracy of the trained neural operators at different numbers of training 
samples is shown. The accuracy number is computed according to (15) using 512 samples from the prior distribution that 
are unseen during training. The accuracy ceiling around 90% is reached at ntrain = 1382.

For each trained neural operator, the accuracy for the error-corrected neural operators using the same 512 samples is 
also computed and shown in Fig. 5. The error-corrected mappings for all 6 trained operators are close to 100% accurate. 
The visualization of absolution errors for the predictions by the best performing neural operator with ntrain = 6912 and its 
error-corrected predictions at samples from the prior distribution are shown in Fig. 4. We observe that the error correction 
step leads to a drop of maximum absolute pointwise error from the order of 10−2 to the order of 10−5.

Remark 5. For both numerical examples in Sections 5.2 and 5.3, we additionally compute the L2(�) generalization accuracy 
of the trained neural operators with visualizations presented in Appendix C. The L2(�) generalization accuracy replaces ‖·‖U
in (15) with ‖·‖L2(�) . To compute the L2(�) generalization accuracy, one discards the terms involving spatial derivatives 
during the computation of the state norm ‖·‖U in (15). In most existing studies of neural operators, this L2(�) generalization 
accuracy is the only accuracy metric used for model validation and testing. However, the L2(�) generalization accuracy does 
not necessarily reflect the accuracy for the operator learning problem (10) when the output space U is the solution space 
of PDEs with bounded derivatives.

5.3.2. Bayesian inverse problem setting
We consider a set of synthetic observation data y∗ generated according to the data model in (4) for the reaction–

diffusion problem at a synthetic parameter fields m∗ . It has distinctive curvatures generated using a Rosenbrock function. 
We visualize the synthetic parameter m∗ as well as its corresponding coefficient field κ∗ and model solution u∗ = Fh(m∗)
in Fig. 6.

To complete the data model, we define an observation operator and a noise distribution. Here we consider a linear 
observation operator that extracts discrete observations of the model solution at a uniform grid of 10 × 10 points in the 
domain �. Let {x j}100

j=1 denote the observation points. Given a function u ∈ U , the observation operator B(u) ∈R100 returns 
local averages of a given state around the observation points:
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Fig. 6. Visualization of the setting for a synthetic Bayesian inverse problem based on the nonlinear Poisson problem introduced in Section 5.3.2. From left to 
right, we have (i) the synthetic parameter field, m∗ , defined using a Rosenbrock function, (ii) the corresponding synthetic coefficient field, κ∗ , (iii) the finite 
element solution at m∗ , Fh(m∗), (iv) the synthetic observed data, y∗ , extracted from locally averaged values of Fh(m∗) at a 10 × 10 grid of observation 
points, corrupted by a randomly sampled additive white noise with a standard deviation of 0.0073.

Fig. 7. Visualization of posterior predictive mean estimates in (44) of the coefficient field κ for a synthetic Bayesian inverse problem introduced in Sec-
tion 5.3.2. From left to right, we have the estimates by (i) the model via the finite element method, (2) the neural operator trained with ntrain = 1382, (3) 
the neural operator trained with ntrain = 3225, (4) and the neural operator trained with ntrain = 6912. The accuracy of the neural operators is around 90%
as shown in Fig. 5.

B(u) =
[

|Br(x1)|−1
∫

Br(x1)

u(x) dx · · · |Br(x100)|−1
∫

Br(x100)

u(x) dx
]

, (43)

where Br(x j) is a circle with a small radius r > 0 centered at the observation point and |Br(x j)| is the size of the circle. We 
assume the observation is corrupted with white noise, i.e., N ∼ N (0, σ 2 I), with a standard deviation of σ = 0.0073 that is 
1% of the maximum value in B(u∗).

5.3.3. Posterior visualization and cost analysis
To visualize and compare posterior distributions with likelihood functions evaluated with the model via the finite ele-

ment method, neural operators, and error-corrected neural operators, we generate samples from these posterior distributions 
via the pCN algorithm introduced in Section 2.3, and visualize their posterior predictive means of the coefficient field by 
sample average approximation,

κmean ≈ 1

npost

npost∑
j=1

exp(m j) , (44)

where {m j ∈ Mh}npost
j=1 are posterior samples. For each posterior distribution, 8 MCMC chains are constructed with a mixing 

parameter of βpCN = 0.03, and samples of total npost = 120, 000 are collected. While the mixing of the chains is seen to be 
rapid, a conservative burn-in rate of 25% is used. The average sample acceptance rate for MCMC sampling using the model 
is around 20%.

In Fig. 7, we visualize the model-generated posterior predictive mean estimate of the coefficient field alongside the 
ones generated by the three best-performing neural operators. We observe that the estimates by these neural operators are 
unable to recover the distinctive curvature of the coefficient field captured by the model estimate, even though they are 
near the accuracy ceiling of neural operator training, where the accuracy increment is quickly diminishing with respect to 
the size of the training data. In Fig. 8, we provide the same visualization of the estimates generated by the three neural 
operators with error correction. We observe that they produce estimates that are much more consistently similar to the 
ones generated by the model.

In Fig. 9, we visualize the observed and asymptotic speedups for the posterior sampling using the 7 trained neural 
operators with or without the error correction. As defined in Section 4.4, the asymptotic speedup assumes nchain → ∞ in 
the sense that a long Markov chain is generated or repetitive use of the trained neural operators in different problems. As 
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Fig. 8. Visualization of posterior predictive mean estimates of the coefficient field in (44) for a synthetic Bayesian inverse problem introduced in Sec-
tion 5.3.2. From left to right, we have the estimates by (i) the model via the finite element method, (2) the neural operator trained with ntrain = 1382 with 
error correction, (3) the neural operator trained with ntrain = 3225 with error correction, (4) and the neural operator trained with ntrain = 6912 with error 
correction. The accuracy of the neural operators with error correction is close to 100% as shown in Fig. 5.

Fig. 9. The observed and asymptotic speedups, as defined in Section 4.4, for the posterior sampling via pCN for the neural operators and the error-
corrected neural operators for the nonlinear reaction–diffusion problem. The asymptotic speedups assume nchain → ∞, thus neglecting the offline cost of 
neural operator construction and training. The observed speedups additionally account for the offline cost and the total number of iterative solves within 
generated Markov chains used for the posterior visualization in Fig. 7 and 8.

a result, the offline costs of the neural operator construction and training are neglected. The asymptotic speedup of the 
error-corrected neural operators is about 2.5, which is the number of Newton iterations for solving the nonlinear problem, 
averaged over the posterior distribution. The asymptotic speedup of the neural operators is over two orders of magnitude. 
The observed speedups additionally account for the offline cost of reduced basis approximation, training data generation, and 
optimization. The finite nchain used for the posterior sampling presented above is used to compute the observed speedups. 
As a result, the observed speedups for the neural operator decay substantially as the number of training data increases. 
We observe almost an order of magnitude drop of speedup for ntrain = 6912 compared to ntrain = 100. A similar decay is 
observed for the error-corrected neural operators, but the dominant cost remains the cost of solving the linear systems 
associated with the error-correction steps.

5.4. Hyperelastic material properties discovery

Here we introduce the physical and mathematical setting for hyperelastic material properties discovery. This problem 
has attracted many research interests for its essential role in various engineering and medical applications [105–108]. We 
consider an experimental scenario where a square thin film of a hyperelastic material is fixed on one edge, with a traction 
force applied on the opposite edge, leading to a deformation of the material. We attempt to infer the material properties 
as spatially-varying functions from noisy measurements of material displacement at discrete positions via Bayes’ rule. The 
schematic of the problem setup is shown in Fig. 10.

5.4.1. A model for hyperelastic material deformation
Let �0 = (0, 1)2 be a normalized unit square material domain for the material of interest under the thin film approxi-

mation, and X ∈ �0 denote the material point. The current configuration of the material after deformation is represented 
by a map χ : � → R2. The material point X is mapped to a spatial point x = χ(X) = X + u(X), where u = u(X) is the 
displacement of material points. Internal forces are developed within the body as material deforms relative to a given refer-
ence configuration. These internal forces depend on the underlying stored internal energy; for a hyperelastic material, there 
is a strain energy density, W = W (X, C), as a function of material coordinate X and the right Cauchy–Green strain tensor 
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Fig. 10. Schematics of a numerical experiment involving deformation of a hyperelastic material. Here the red dots are the points on the reference domain 
at which displacement (both components) is observed. On the left edge, the material is clamped so that the displacement is zero at this edge. Traction is 
prescribed as a function t = t(X) on the right edge. The top and bottom edges are traction free.

C = F T F , F = ∇χ = I + ∇u being the deformation gradient. The stress in the reference configuration, S = S(X, C) is the 
second Piola–Kirchhoff stress tensor given by

S(X, C) = 2
∂W (X, C)

∂C
. (45)

We consider the model for neo-Hookean materials [109,110] for which strain energy density function takes the form

W (X, C) = μ(X)

2
(tr(C) − 3) + λ(X)

2
(ln( J ))2 − μ(X) ln( J ) , (46)

where tr(C) is the trace of the second order tensor C , and J is the determinant of the deformation gradient F . Here λ and 
μ are the so-called Lamé parameters which we assume to be related to Young’s modulus of elasticity, E , and Poisson ratio, 
ν , as follows:

λ = Eν

(1 + ν)(1 − 2ν)
, μ = E

2(1 + ν)
. (47)

In what follows, we assume prior knowledge of (i) Poisson ratio ν = 0.4, and (ii) an epistemically uncertain and spatially-
varying Young’s modulus, E : �0 →R+ , that follows a log-normal prior distribution:

E = exp(M) + E L , M ∼ νM := N (mpr,Cpr) , (48)

where E L > 0 is a lower bound on the pointwise value of the random function, normalized to have a value of 1, and mpr =
0.37 is a constant over �0. The Bayesian inverse problem aims to learn the material properties E through the parameter 
random field M from observed displacements via Bayes’ rule.

The prior distribution of M is constructed according to (6) with hyperparameters of d = 2, α = 4/3, β = 0.12, and 
� = I . They correspond to Gaussian random fields with a pointwise variance of approximately 1, a correlation length of 
approximately 0.3, and small boundary artifacts. In Fig. 11, we visualize several samples of the prior and their corresponding 
Young’s modulus fields.

Assuming a quasi-static model in which external forces are applied very slowly so that dependence of displacement on 
time can be ignored and negligible body forces, the balance of linear momentum leads to the following nonlinear PDE for a 
given parameter m : �0 →R.

∇ · (F (X)S(X,m(X), C(X))) = 0 , X ∈ �0 ; (49a)

u = 0 , X ∈ �l ; (49b)

F (X)S(X,m(X), C(X)) · n = 0 , X ∈ �t ∪ �b; (49c)

F (X)S(X,m(X), C(X)) · n = t(X) , X ∈ �r . (49d)

Here, �t , �r , �b , and �l denote the top, right, bottom, and left boundary of the material domain, and t is the traction given 
by

t(X) = a exp

(
−|X2 − 0.5|2

b

)
e1 + c

(
1 + X2

d

)
e2 (50)

with a = 0.06, b = 4, c = 0.03, and d = 10. The applied traction on the right side combines shear and tensile forces.
We consider the following parameter space, state space, and solution set for the nonlinear PDE problem above:

M := L2(�0) , U := H1(�0;R2) , U0 = Vu := {u ∈ H1(�0;R2) : u|� = 0} , (51)
l
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Fig. 11. Visualization of the prior distribution, model solutions, and neural operator performance with and without error correction for the hyperelastic 
material deformation problem introduced in Section 5.4.1. From left to right, we have (i) three Gaussian random fields, m j , j = 1, 2, 3, sampled from the 
prior distribution νM with approximately a pointwise variance of 1 and a correlation length of 30% domain side length, each occupies a row; (ii) the 
corresponding Young’s modulus samples, E j , defined by E j = exp(m j) + 1, (viii) the corresponding finite element solutions of the current configurations, 
Fh(m j), (iv) the absolute prediction errors at m j for the best performing neural operator F̃w (∼ 95% accurate as shown in Fig. 12), |Fh(m j) − F̃w (m j)|, 
and (v) the absolute errors at m j for the error-corrected predictions based on the best performing neural operator.

where the restriction to the boundary is defined with the trace operator. The function spaces are equipped with the Sobolev 
norm. The variational problem for the experimental scenario is:

Given m ∈ M, find u ∈ Vu such that

〈R(u,m), v〉 :=
∫
�0

F S(X,m(X)C(X):∇v dX −
∫
�t

t · v dX = 0 , ∀v ∈ U0 . (52)

In Fig. 11, we show the model predictions via the finite element method, to be specified in the following subsection, of the 
current configurations at random samples from the prior.

5.4.2. Numerical approximation and neural operator performance
The numerical evaluation of the forward operator, Fh , sampling of the prior distribution, νh

M , and the residual-based 
error correction problem is implemented via the finite element method. In particular, the domain �0 is discretized with 
64 × 64 cells of uniform linear Lagrangian triangular elements, which forms finite element spaces Mh ⊂ M and Uh ⊂ U
with 8450 and 4225 degrees of freedom, respectively. The variational problems of the model, prior sampling, and error 
correction are then approximated and solved in these finite element spaces. We employ the Newton iteration for solving 
the hyperelastic material deformation problem, which takes on average 8 iterations to converge for parameter samples 
generated from the prior distribution.

Applying neural operator construction and training specified in Section 5.1 to the hyperelastic material deformation 
problem, we produced 7 neural operators using a increasing number of training samples, ntrain = 100, 201, 403, 806, 1612, 
3225, 6912, assuming p = 2 in the Bochner norm. In Fig. 12, the accuracy of the trained neural operators at different 
numbers of training samples is shown. The accuracy number is computed according to (15) using 512 samples from the 
prior distribution that are unseen during training. The accuracy ceiling around 95% is reached at ntrain = 1612, and a slight 
drop in accuracy is observed at ntrain = 6912 samples.

For each trained neural operator, the accuracy for the error-corrected neural operator using the same 512 samples is also 
computed and shown in Fig. 12. The error-corrected neural operator mapping for all 7 trained operators is close to 100%
accurate.
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Fig. 12. A study of the generalization accuracy, as defined in (15), of 7 neural operators trained using a varying number of training samples for the 
hyperelastic material deformation problem. The neural operators are constructed using a derivative-informed projected ResNet; see Section 5.1 for details 
on its construction and training. Generalization accuracy is computed using 512 data unseen during training. An empirical accuracy ceiling of ∼ 95% is 
reached for the given neural network architecture.

Fig. 13. Visualization of a synthetic Bayesian inverse problem setting based on the hyperelastic material deformation introduced in Section 5.4.3. From left 
to right, we have (i) the synthetic parameter field, m∗ , defined as the sum of three Gaussian bumps with different weights and diagonal covariances, (ii) 
the corresponding synthetic Young’s modulus field, E∗ , (iii) the finite element solution at m∗ , Fh(m∗), (iv) the synthetic observed data, y∗ , extracted from 
locally averaged values of Fh(m∗) at a 10 × 10 grid of observation points, corrupted by a randomly sampled additive white noise with a standard deviation 
of 0.0089.

The visualization of absolution errors for the predictions by the best performing neural operator with ntrain = 3225
and its error-corrected predictions at samples from the prior distribution is shown in Fig. 11. We observe that the error 
correction step leads to a drop of maximum absolute pointwise error from the order of 10−3 to the order of 10−4. For prior 
samples that lead to small deformations, an additional order of magnitude drop in the maximum absolute pointwise error 
is observed.

5.4.3. Bayesian inverse problem setting
We consider a set of synthetic observation data y∗ generated according to the data model in (4) for hyperelastic ma-

terial deformation at a synthetic parameter field m∗ generated by a sum of three Gaussian bumps with different diagonal 
covariance and weights. This parameter corresponds to a synthetic Young’s modulus field of E∗ that may represent a mix-
ture of a small amount of spatially concentrated stiffer materials and a large amount of softer materials, e.g., cancer mass 
enclosed in healthy tissue. We visualize the synthetic parameter m∗ , corresponding Young’s modulus E∗ , and displacement 
field u∗ =Fh(m∗) in Fig. 13.

To complete the data model, we define an observation operator and a noise distribution. We, again, consider a linear 
observation operator that extracts discrete observations of the displacement vector at a uniform grid of 10 × 10 points 
in the reference domain �0. This form of the observation operator is compatible with image analysis techniques such as 
digital image correlation; see, e.g., [111–117]. Let {X j}100

j=1 denote the observation points. Given a displacement field u ∈ U , 
the observation operator B(u) ∈R2×100 returns local averages of the displacements around the observation points:

B(u) =
[

|Br(X1)|−1
∫

Br(X1)

u(X) dX · · · |Br(X100)|−1
∫

Br(X100)

u(X) dX
]

. (53)

We assume the observation is corrupted with white noise, i.e., N ∼ N (0, σ 2 I), with a standard deviation of σ = 0.0089
that is 1% of the maximum values in B(u∗).
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Fig. 14. Visualization of the posterior predictive estimates of Young’s modulus field in (54) for a synthetic Bayesian inverse problem introduced in Sec-
tion 5.4.3. From left to right, we have the estimates by (i) the model via the finite element method, (2) the neural operator trained with ntrain = 1612, (3) 
the neural operator trained with ntrain = 3225, (4) and the neural operator trained with ntrain = 6912.

Fig. 15. Visualization of posterior the predictive mean estimates of Young’s modulus field in (54) for a synthetic Bayesian inverse problem introduced in 
Section 5.4.3. From left to right, we have the estimates by (i) the model via the finite element method, (2) the neural operator trained with ntrain = 1612
with error correction, (3) the neural operator trained with ntrain = 3225 with error correction, (4) and the neural operator trained with ntrain = 6912 with 
error correction.

5.4.4. Posterior visualization and cost analysis
To visualize and compare posterior distributions defined with likelihood functions evaluated using the model via the 

finite element method, neural operators, and error-corrected neural operators, we generate samples from these posterior 
distributions via the pCN algorithms introduced in Section 2.3, and visualize the posterior predictive mean of Young’s mod-
ulus by sample average approximation,

Emean ≈ 1

npost

npost∑
j=1

(exp(m j) + 1) , (54)

where {m j ∈ Mh}npost
j=1 are the posterior samples. For each posterior distribution, 8 MCMC chains are constructed with a 

mixing parameter of βpCN = 0.05 and collect, in total, posterior samples of npost = 120, 000. While the mixing of the chains 
is rapid, a conservative burn-in rate of 25% is used. The average sample acceptance ratio for MCMC sampling using the 
model is around 10%.

In Fig. 14, we visualize the model-generated posterior predictive mean estimate of Young’s modulus alongside the ones 
generated by the three best-performing neural operators. We observe that the estimate by the neural operator with ntrain =
1612 completely misplaced two of the bumps clearly visible in the model estimate. A doubling of training data and a 
slight increase of accuracy from ntrain = 1612 to ntrain = 3225 leads to a visually significant increase in the accuracy of the 
neural operator estimate. The neural operator with ntrain = 3225 is able to qualitatively recover most features in the model 
estimate, with some difficulty in capturing the shape of the top bump and the location of the lower left bump. However, a 
doubling of training data from ntrain = 3225 to ntrain = 6912 in an attempt to further improve this result leads to a slight 
drop in the accuracy of the neural operator and a significant decrease in accuracy of the estimate. This observation reflects 
the unreliability of approximation error reduction of neural operators and thus the unreliability of the surrogate modeling 
approach for inverse problems based solely on trained neural operators.

In Fig. 15, we provide the same visualization for the estimates produced by the same neural operators but with error cor-
rection. We observe that they generate estimates that are qualitatively much similar to the model-generated estimate, where 
all three bumps are captured with positions and magnitudes matching that of the model. These estimates are relatively con-
sistent across the three neural operators, even though the three neural operators show drastically different accuracy in their 
estimates, demonstrating the robustness of our approach for error reduction of neural operators in Bayesian inverse prob-
lems.
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Fig. 16. The observed and asymptotic speedups, as defined in Section 4.4, for the posterior sampling via pCN for both the neural operators and the error-
corrected neural operators. The asymptotic speedups assume nchain → ∞, thus neglecting the offline cost of neural operator construction and training. The 
observed speedups additionally account for the offline costs and the total number of iterative solves within generated Markov chains used for the posterior 
visualization in Fig. 14 and 15.

In Fig. 16, we visualize the observed and asymptotic speedups for the posterior sampling using the 7 trained neural op-
erators with or without the error correction. Similarly to the computational cost analysis for the reaction–diffusion problem, 
the asymptotic speedups here assume nchain → ∞, and the offline cost of the neural operator construction and training is 
neglected. The asymptotic speedup of the error-corrected neural operators is about one order of magnitude, which is the 
number of Newton iterations for solving the nonlinear problem, averaged over the posterior distribution. The asymptotic 
speedup of the neural operators is over two orders of magnitude. The observed speedups additionally account for the of-
fline cost of reduced basis approximation, training data generation, and optimization, and included a finite nchain used for 
the posterior sampling presented above. The resulting observed speedups for the neural operators decay substantially as the 
number of training data increases and nearly drops an order of magnitude from ntrain = 100 to ntrain = 6912. The observed 
speedup at the latter is in the same order as the asymptotic speedup of the error-correction neural operators. A similar 
decay of the observed speedups is seen for the error-corrected neural operators. The dominant cost remains the cost of 
solving the linear systems associated with the error correction steps.

6. Conclusion and outlook

In this work, we presented a residual-based error correction strategy for the reliable deployment of trained neural oper-
ators as a surrogate of the parameter-to-state map defined by nonlinear PDEs for accelerating infinite-dimensional Bayesian 
inverse problems. The strategy is motivated by the a posterior error estimation techniques applied to estimating modeling 
error. For a trained neural operator, we utilized its prediction at a given parameter to formulate and solve a linear vari-
ational problem, or an error-correction problem, based on the PDE residual and its derivative. The resulting solution can 
lead to a quadratic reduction of local error due to the equivalency of solving the error-correction problem and generation 
one Newton step under some mild conditions. We show that this can be extended to a global reduction, i.e., over the prior 
distribution, of approximation errors for well-trained neural operators.

The proposed strategy addresses an important issue facing the application of operator learning using neural networks: 
the unreliability of neural operator performance improvement or approximation error reduction via training. By deriving 
an a priori error bound, we demonstrate that the approximation error of trained neural operators controls the error in 
the posterior distributions of Bayesian inverse problems when used as surrogate parameter-to-state maps in likelihood 
functions. Furthermore, the resulting error in the posterior distributions may be significantly magnified for Bayesian inverse 
problems with uninformative prior distributions, high-dimensional data, small noise corruption, and inadequate models. In 
situations where the approximation error of a neural operator is persistent and not easily reduced to an acceptable level for 
the target Bayesian inverse problem via training, our proposed strategy offers an effective alternative of constructing error-
corrected neural operators for achieving these accuracy requirements, all while retaining substantial computational speedups 
by leveraging the predictability of trained neural operators. For models governed by large-scale highly nonlinear PDEs, 
where the costs of evaluating trained neural operators are relatively negligible, this strategy provides a great computational 
speedup for posterior characterization, which is approximately the expected number of iterative linear solves within a 
nonlinear PDE solve at parameters sampled from the posterior distribution.

We demonstrate the advantages of our proposed strategy through two numerical examples: inference of an uncertain 
coefficient field in an equilibrium nonlinear reaction–diffusion equation and hyperelastic material properties discovery. For 
both problems, the performance of trained neural operators shows diminishing improvement from < 80% accuracy with 
a small number of training samples to their empirical accuracy ceilings of < 95% with a much larger number of training 
samples, while the performance of error-corrected neural operators is consistent with near 100% accuracy. The visualization 
of the posterior predictive mean estimates suggests that trained neural operators alone as surrogates of the parameter-
to-state map cannot reliably recover distinctive features of the physical parameters that are shown to be retrievable via 
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inference with full-scale model solves, while the error-corrected neural operators as surrogates show consistency in its 
ability to recover these features.

Many other outer-loop problems in engineering, sciences, and medicine, such as optimal control and design under un-
certainties, can also benefit from fast and accurate full-state predictions using error-corrected neural operators. Moreover, 
many of these outer-loop problems, including Bayesian inverse problems, are based on physical systems modeled by non-
linear time-evolving PDEs. Although the combination of residual-based error correction and neural operators is generally 
applicable to these outer-loop problems and models, thorough theoretical and numerical investigations are needed to un-
derstand its range of applications and limitations in these settings.

From our theoretical and numerical analysis of the computational speedups of error-corrected neural operators, it is 
clear that the dominant computational cost of the proposed strategy is the accumulated cost of solving the full linear error 
correction problem at each neural operator prediction. This burden can also be mitigated by incorporating approximation 
techniques such as model order reduction, developing problem-specific fast solvers, or even training a neural operator 
for the error correction problem. Other possible applications of the error-corrected neural operators are in multilevel or 
multifidelity methods for outer-loop problems.
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Appendix A. The full statement and proof of Theorem 1

Theorem 1 (Operator learning errors in Bayesian inverse problems). Assume U and M are real-valued separable Hilbert spaces 
equipped with inner product–induced norm ‖·‖U and ‖·‖M . Let νM be a probability measure on M, and F , F̃ ∈ Lp(M, νM; U), 
p ∈ [2, ∞], where the Bochner space is equipped with the norm

‖G‖L p(M,νM ;U) =
{(

EM∼νM

[‖G(M)‖p
U
])1/p

p ∈ [1,∞)

ess supM∼νM
‖G(M)‖U p = ∞ .

Assume the observation operator B : U →Rny satisfies

‖(B ◦F)(m)‖2 ≤ cB ‖F(m)‖U ,
∥∥(B ◦ F̃)(m)

∥∥
2 ≤ c̃B ‖F(m)‖U , νM -a.e. ,∥∥(B ◦F)(m) − (B ◦ F̃)(m)

∥∥
2 ≤ cL

∥∥F(m) − F̃(m)
∥∥
U , νM -a.e.

Assume the additive noise Rny � N ∼ νN = N (0, C N ) is normally distributed with a probability density function πN (x) =
((2π)ny det(C N ))−1/2 exp(− 1

2 xT C N x), x ∈Rny .
For a set of observed data y∗ ∈Rny , we have

Epost ≤ c ‖E‖L p(M,νM ;U) , c > 0 ,

where Epost is the Kullback–Leibler divergence between the posterior distribution defined by F and F̃ .
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Epost := D K L(νM|Ỹ (·|y∗)||νM|Y (·|y∗)) , E(m) := F(m) − F̃(m) , νM -a.e. ,

and the divergence is governed by Bayes’ rule

dνM|Y (·|y∗)
dνM

(m) = 1

Z(y∗)
πN

(
y∗ − (B ◦F)(m)

)︸ ︷︷ ︸
=:L(m;y∗)

a.s. , Z(y∗) = EM∼νM [L(M; y∗)] ,

dνM|Ỹ (·|y∗)
dνM

(m) = 1

Z̃(y∗)
πN

(
y∗ − (B ◦ F̃)(m)

)︸ ︷︷ ︸
=:L̃(m;y∗)

a.s. , Z̃(y∗) = EM∼νM [L̃(M; y∗)] ,

where we assume νM|Y (·|y∗) ∼ νM|Ỹ (·|y∗) ∼ νM ·, meaning that they are pairwise equivalent.

Proof. Let us first dissect Epost into two parts:

Epost = EM∼νM|Ỹ (·|y∗)

[
ln

(
dνM|Ỹ (·|y∗)
dνM|Y (·|y∗)

(M)

)]
(Def. of KL divergence)

= EM∼νM

[
ln

(
dνM|Ỹ (·|y∗)
dνM|Y (·|y∗)

(M)

)
1

Z̃(y∗)
L̃(M; y∗)

]
(Change of var. formula)

= EM∼νM

[
ln

(
dνM|Ỹ (·|y∗)

dνM
(M)

dνM

dνM|Y (·|y∗)
(M)

)
1

Z̃(y∗)
L̃(M; y∗)

]
(Mutually abs. continuous)

= EM∼νM

[
ln

(
Z(y∗)
Z̃(y∗)

L̃(M; y∗)
L(M; y∗)

)
1

Z̃(y∗)
L̃(M; y∗)

]
(Bayes’ rule)

= ln

(
Z(y∗)
Z̃(y∗)

)
︸ ︷︷ ︸

A©
+ 1

Z̃(y∗)
EM∼νM

[
ln

(
L̃(M; y∗)
L(M; y∗)

)
L̃(M; y∗)

]
︸ ︷︷ ︸

B©
. (Def. of model evidence)

The term that involves the likelihoods can be bounded by

B© = 1

Z̃(y∗)
EM∼νM

[(
�(M) − �̃(M)

)
L̃(M; y∗)

] ⎛⎝⎧⎨⎩�(m) = 1
2 ‖y∗ − (B ◦F)(m)‖2

C−1
N

�̃(m) = 1
2

∥∥y∗ − (B ◦ F̃)(m)
∥∥2

C−1
N

⎞⎠
≤ 1

Z̃(y∗)
EM∼νM

[∣∣�(M) − �̃(M)
∣∣ L̃(M; y∗)

]
(Jensen’s ineq.)

≤
∥∥L̃(·; y∗)

∥∥
Lq∗

(M,νM)

Z̃(y∗)
∥∥� − �̃

∥∥
L p∗

(M,νM )
.

(
Hölder’s ineq., q∗ is the conj. exp. to p∗ ∈ [1,∞])

We make several remarks on the last inequality. First, the validity of the inequality is conditional upon whether we can 
bound 

∥∥� − �̃
∥∥

Lp∗
(M,νM )

for some p∗ ∈ [1, ∞]. Second, if such a p∗ exists, the fraction term is larger than one if p∗ ∈ [1, ∞)

and equal to one for p∗ = ∞, as the following inequalities hold for any q ∈ [1, ∞] due to inclusion of Lebesgue spaces 
defined on domains with finite measures (νM (M) = 1):

Z̃(y∗) = ∥∥L̃(·; y∗)
∥∥

L1(M,νM )
≤ ∥∥L̃(·; y∗)

∥∥
Lq(M,νM )

≤ (
(2π)ny det(C N )

)−1/2
.

Now we seek to

1. bound EP (m) := �(m) − �̃(m), νM -a.e., from above for some p∗ , and
2. bound Z̃(y∗) from below.

From now on, we assume p ∈ [2, ∞) as the extension to p = ∞ is straightforward.
First, we examine B ◦F , B ◦ F̃ , and E B(m) := (B ◦F)(m) − (B ◦ F̃)(m), νM -a.e.,

‖B ◦F‖p
L p(M,νM ;Rny )

= EM∼νM

[‖(B ◦F)(M)‖p
2

]
(Def. of Bochner space norm)

≤ cp
BEM∼νM

[‖F(M)‖p
U
]

(Property of B)

= cp
B ‖F‖p

L p(M,νM ;U)
< ∞ . (Def. of Bochner space norm)

We thus have B ◦F , B ◦ F̃ ∈ Lp(M, νM ; Rny ). Similarly,
27
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‖E B‖p
L p(M,νM ;Rny )

= EM∼νM

[∥∥(B ◦F)(M) − (B ◦ F̃)(M)
∥∥p

2

]
(Def. of Bochner space norm)

≤ cp
LEM∼νM

[∥∥F(M) − F̃(M)
∥∥p
U

]
(Property of B)

= cp
L ‖E‖p

L p(M,νM ;U)
. (Def. of Bochner space norm)

Now we have

‖EP ‖p/2
L p/2(M,νM )

= EM∼νM

[
|�(M) − �̃(M)|p/2

]
= EM∼νM

⎡⎣∣∣∣∣∣
(

1

2
(B ◦F)(M) + 1

2
(B ◦ F̃w)(M) − y∗

)T

C−1
N E B(M)

∣∣∣∣∣
p/2
⎤⎦

≤EM∼νM

[∥∥∥∥1

2
C−1

N

(
(B ◦F)(M) + (B ◦ F̃w)(M) − 2 y∗)∥∥∥∥p/2

2
‖E B(M)‖p/2

2

]

≤EM∼νM

[∥∥∥∥1

2
C−1

N ((B ◦F)(M) + (B ◦ F̃w)(M) − 2 y∗)
∥∥∥∥p

2

]
︸ ︷︷ ︸

cp
1

1/2

EM∼νM

[‖E B(M)‖p
2

]1/2
.

Where we apply the Cauchy–Schwarz inequality for the two inequalities above. The first expectation above is bounded by

cp
1 ≤ 1

2

∥∥∥C−1
N

∥∥∥p

2

(
‖B ◦F‖L p(M,νM ;Rny ) + ∥∥B ◦ F̃

∥∥
L p(M,νM ;Rny )

+ 2
∥∥y∗∥∥

2

)p
(Minkowski ineq.)

≤ 1

2

∥∥∥C−1
N

∥∥∥p

2

(
cB ‖F‖L p(M,νM ;U) + c̃B

∥∥F̃∥∥L p(M,νM ;U)
+ 2

∥∥y∗∥∥
2

)p
< ∞ .

Consequently

‖EP ‖L p∗
(M,νM ) ≤ c1 ‖E B‖L p(M,νM ;Rny ) ≤ c1cL ‖E‖L p(M,νM ;U) < ∞ , p∗ ∈ [1, p/2] .

Second, we examine the lower bound for Z̃(y∗):

c−1
2 := (

(2π)ny det(C N )
)1/2

Z̃(y∗) =EM∼νM

[
exp(−�̃(M))

]
≥ exp

(−EM∼νM

[
�̃(M) · 1

])
(Jen. ineq.)

≥ exp

(
−1

2
EM∼νM

[∥∥y∗ − (B ◦ F̃)(M)
∥∥p

C−1
N

]1/p
)

(Höd. ineq.)

≥ exp

(
−1

2

∥∥∥C−1
N

∥∥∥
2

(∥∥y∗∥∥
2 + ∥∥B ◦ F̃

∥∥
L p(M,νM ;Rny )

))
(Min. ineq.)

≥ exp

(
−1

2

∥∥∥C−1
N

∥∥∥
2

(∥∥y∗∥∥
2 + c̃B

∥∥F̃∥∥L p(M,νM ;U)

))
> 0 . (A.1)

Therefore, for q ∈ [p/(p − 2), ∞] we have

c3 :=
∥∥L̃(·; y∗)

∥∥
Lq(M,νM)

Z̃(y∗)
≤
∥∥L̃(·; y∗)

∥∥
L∞(M,νM)

Z̃(y∗)
≤ c2 < ∞ .

Consequently, the term B© is bounded from above as follows

B© ≤ c1c3cL ‖E‖L p(M,νM ;U) .

Following, the term A© involving normalization constants can be bounded by

A© = ln

(
1 + Z(y∗) − Z̃(y∗)

Z̃(y∗)

)
≤ ln

(
1 + |Z(y∗) − Z̃(y∗)|

Z̃(y∗)

)
(ln(·) monotonic incres.)

≤ 1˜ ∗
∣∣Z(y∗) − Z̃(y∗)

∣∣ (log(1 + x) ≤ x ∀x ≥ 0)

Z(y )
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≤ 1

((2π)ny det(C N ))1/2 Z̃(y∗)
∣∣EM∼νM

[
exp(−�(m)) − exp(−�̃(m))

]∣∣︸ ︷︷ ︸
D©

.

Next, we estimate D© as follows

D© ≤EM∼νM

[|exp(−�(m)) − exp(−�̃(m)|] (Jensen’s ineq.)

≤EM∼νM [|EP · 1|] (|e−x1 − e−x2 | ≤ |x1 − x2|, x1, x2 ≥ 0)

≤ ‖EP ‖L p/2(M,νM ) (Hölder’s ineq.)

≤ c1cL ‖E‖L p(M,νM ;U) .

Combining the two inequalities above and noting the definition of a constant c2 in (A.1), we have shown

A© ≤ c1c2cL ‖E‖L p(M,νM ;U) .

In conclusion, we have

Epost ≤ c1(c2 + c3)cL ‖E‖L p(M,νM ;U) . �
Appendix B. The full statement of the corollary to the Newton–Kantorovich theorem

We state the corollary to the Newton–Kantorovich theorem assuming the equivalency between solving the error correc-
tion problem in the solution set Vu and generating one Newton step in U0 with a given “lifting” element uL ∈ Vu for the 
nonlinear equation

Given m ∈ M, find v ∈ U0 such that R̃(v,m) = 0 , R̃(v,m) := R(v + uL,m) ∈ U∗
0 .

We thus redefine the forward operator and the neural operator to F(·) − uL and F̃w (·) − uL − ũ⊥ , where ̃u⊥ ∈ U⊥
0 represent 

F̃w (·) − uL projected to U⊥
0 . Additionally, we define the space of bounded linear operator between two Banach spaces X

and Y as B(X , Y) equipped with the operator norm,

‖G‖B(X ,Y) = sup
y �=0

‖G(x)‖Y
‖x‖X .

The following result directly translates the Newton–Kantorovich theorem in Banach spaces as stated by Ciarlet [89] to our 
setting.

Corollary 2 (Global error reduction for residual-based error correction). Let U and M be real-valued separable Hilbert spaces equipped 
with inner products–induced norm ‖·‖U and ‖·‖M . Let νM be a probability measure on M and F̃ ∈ L∞(M, νM; U). Assume there 
exists F ∈ L∞(M, νM ; U) such that

R(F(m),m) ≡ 0 , νM -a.e. , (B.1)

for R : U ×M → U∗ . Assume for any m ∈M, νM -a.e., there exists an open set Dm ⊆ U with F̃(m) ∈Dm such that R(·, m) :Dm →
U∗ is differentiable and its derivative at F̃(m), δuR(F̃(m), m) ∈ B(U , U∗), is bijective. Assume that there exists three constants c1, 
c2 , c3 such that

0 < c1c2c3 ≤ 1

2
and Br(F̃(m)) ⊂ Dm, where r := 1

c2c3
,

and ∥∥δuR(F̃(·), ·)−1R(F̃(·), ·)∥∥L∞(M,ν;U)
≤ c1 ,∥∥δuR(F̃(·), ·)−1

∥∥
L∞(M,νM ;B(U∗,U))

≤ c2 ,

‖δuR(u1,m) − δuR(u2,m)‖B(U,U∗) ≤ c3 ‖u1 − u2‖U , ∀u1, u2 ∈ Br(F̃(m)) , νM -a.e.

Then for any m ∈M, νM -a.e., δuR(u, m) is bijective at each u ∈ Br(F̃(m)) and the sequence {u j}∞j=0 with u0 = F̃(m) defined as

u j+1 = u j − δuR(u j,m)−1R(u j,m) , k ≥ 0 ,

is contained in the ball Br−(F̃(m)), where

r− := 1 − √
1 − 2c1c2c3 ≤ r ,

c2c3
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Fig. C.17. A study of the L2(�) generalization accuracy, as defined in (C.1), of the neural operators studied in Figs. 5 and 12. The accuracy is computed using 
512 data unseen during training.

and converges to F(m). Besides, for each j ≥ 0,⎧⎪⎪⎨⎪⎪⎩
∥∥u j −F(·)∥∥L∞(M,νM ;U)

≤ r

2 j
(

r−
r

)2 j
, c1 <

1

2c2c3
,∥∥u j −F(·)∥∥L∞(M,νM ;U)

≤ r

2 j
, c1 = 1

2c2c3
.

Appendix C. Numerical examples: the L2(�) generalization accuracy

As discussed in Remark 3, we present the L2(�) generalization accuracy for the trained neural operators for both nu-
merical examples in Fig. C.17. The L2(�) generalization accuracy is given by

100

⎛⎜⎝1 −

√√√√√EM∼νM

⎡⎣∥∥F(M) − F̃w(M)
∥∥2

L2(�)

‖F(M)‖2
L2(�)

⎤⎦
⎞⎟⎠ . (C.1)
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