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a b s t r a c t

In this work, we present and analyze a mathematical model for tumor growth
incorporating ECM erosion, interstitial flow, and the effect of vascular flow
and nutrient transport. The model is of phase-field or diffused-interface type in
which multiple phases of cell species and other constituents are separated by
smooth evolving interfaces. The model involves a mesoscale version of Darcy’s
law to capture the flow mechanism in the tissue matrix. Modeling flow and
transport processes in the vasculature supplying the healthy and cancerous tissue,
one-dimensional (1D) equations are considered. Since the models governing the
transport and flow processes are defined together with cell species models on a
three-dimensional (3D) domain, we obtain a 3D–1D coupled model.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

We develop and analyze a mathematical model of vascular tumor growth designed to simulate abstractions
of many of the key phenomena known to be involved in the growth-decline of tumors and therapeutic
treatment in living tissue. The complex vascular structure of tissue and the network of blood vessels sup-
plying nutrients to a solid tumor mass embedded in the tissue are modeled as a network of one-dimensional
capillaries within a three-dimensional tissue domain, while the growth of the tumor is represented by a
phase-field model involving multiple cell species and other constituents. Our tumor models may be regarded
as mesoscale depictions of physical and biological events employing continuum mixture theory to construct
general forms of the Ginzburg–Landau–Helmholtz free energy of biological materials in terms of volume
fractions or mass concentrations of the cell phenotypes and principal mechanical and chemical fields. The
equations governing the tumor growth are derived from the balance laws of continuum mixture theory as
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in e.g. [1–5], and representations of the principal mechanisms governing the development and evolution of
cancer [5,6]. In the tissue containing the tumor cells, the microvascular network is represented by a graph
structure with 1D filaments through which nutrient-containing blood may flow. The exchange of nutrients
between the network and tissue is depicted by a Kedem–Katalchsky type law [7]. We briefly describe the
construction of approximations of these models, see also [8–13].

There is a significant and growing volume of published work on various aspects of this subject. Continuum
mixture theory as a framework for developing meaningful models of materials with many interacting
constituents is proposed in [3–5,10,14,15]. Of particular interest are the comprehensive developments of
diffuse-interface multispecies models described in [16,17], the four- and ten species models presented in [5,14],
and the multispecies nonlocal models of adhesion and tumor invasion described in [12]. The book compiled
by Lowengrub and Cristini [10] contains over 700 references to relevant cancer cell biology and mathematical
models of cancer growth. The complex processes underlying angiogenesis which are key to vascular tumor
growth present formidable challenges to the goal of predictive computer modeling. Angiogenesis models
embedded in models of hypoxic and cell growth or decline were presented in [5,16,18–22]. More recent
developments have included models of the vascular network interwoven in tissue containing solid tumors,
and the sprouting of capillaries in response to concentrations of various tumor angiogenesis factors so as
to supply nutrients to hypoxic tumor cells. Such network-tissue models are discussed in [18,23,24]. These
models generalized the lattice-probabilistic network models of [25].

This article is organized as follows: In Section 2, we introduce various components of the complete
model, such as the tissue domain, the 1D network domain, the species in the multi-species phase-field
model. Further, we present the governing partial differential equations. The resulting model is a highly non-
linear coupled system of partial differential equations. We give some analytical preliminaries in Section 3,
e.g. Sobolev embeddings and interpolation inequalities in Bochner spaces, which will be used in the following
sections. In Section 4, we state a theorem for the existence of weak solutions of the coupled non-linear 3D–1D
model under certain given assumptions. In Section 5, we give the proof of the theorem via the Faedo–Galerkin
approximation and compactness methods.

2. Derivation of the model

2.1. Setup and notation

We consider a region of vascularized tissue in a living subject, e.g., within an organ, which is host to
a colony of tumor cells and other constituents that make up the so-called microenvironment of a solid
tumor. The tumor is contained in an open bounded domain Ω ⊂ R3 and is supported by a network
f macromolecules within Ω consisting of collagen, enzymes, and various proteins, that constitute the
xtracellular matrix (ECM). We focus on developing phenomenological characterizations of the evolutions
f the tumor cell colony that attempt to capture mesoscale and macroscale events.

The primary feature of our model of tumor growth is that it employs the framework of continuum mixture
heory in which multiple mechanical and chemical species can exist at a point x ∈ Ω at time t > 0. Thus, for a
edium with N interacting constituents, the volume fraction of each species ϕα, 1 ≤ α ≤ N , is represented

y a field ϕα with value ϕα(t, x) at x ∈ Ω , and time t ≥ 0, and
∑

α ϕα(t, x) = 1. Setting α = 1 = T ,
he volume fraction of tumor cells ϕT (t, x) is understood to represent an averaged cell concentration, a
omogenized depiction over many thousands of cells, since in volumes as small as a voxel in modern tumor
maging techniques, 4 − 5 × 104 cells can exist.

We could also develop equivalent models in terms of mass concentration, cα = ραϕα, ρα being the mass
ensity of species α. Moreover, we assume that ρ = ρ = constant, 1 ≤ α ≤ N , and thus, C and ϕ
α 0 α α
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Fig. 1. Setup of the domain Ω with the microvascular network Λ = ∪Λi and a tumor mass, which is composed in its proliferative
(ϕP ), hypoxic (ϕH ) and necrotic (ϕN ) phase (left). Three dimensional presentation of a given tumor core surrounded by a capillary
network (right).

are up to a fixed scaling equivalent. This simplification is regarded as a reasonable assumption in many
investigations since the mass densities of species are generally close to that of water at room temperature.

As another important feature of our model, we depict the evolving interfaces in which a smooth boundary
layer exists and which is defined intrinsically as a feature of the solution of the forward problem. This feature
is a property of phase-field or diffuse-interface models and avoids complex interface tracking while producing
characterizations of interfaces between cell species which are in good agreement with actual observations (see
Fig. 1).

Moreover, we consider a one-dimensional graph-like structure Λ inside of Ω forming a microvascular
network. The single edges of Λ are denoted by Λi such that Λ is given by Λ =

⋃N
i=1 Λi. The edge Λi is

parameterized by a curve parameter si, such that Λi is given by:

Λi = {x ∈ Ω | x = Λi(si) = xi,1 + si · (xi,2 − xi,1), si ∈ (0, 1)} .

Thereby, xi,1 ∈ Ω and xi,2 ∈ Ω mark the boundary nodes of Λi, see Fig. 2. For the total 1D network
Λ, we introduce a global curve parameter s, which has to be interpreted in the following way: s = si, if
x = Λ(s) = Λi(si). At each value of the curve parameter s, we study 1D constituents, which couple to their
respective 3D counter-part in Ω . In order to formulate the coupling between 3D and 1D constituents in
Sections 2.3 and 2.4, we need to introduce the surface Γ of the microvascular network. For simplicity, it is
assumed that the surface for a single vessel is approximated by a cylinder with a constant radius, see Fig. 2.
The radius of a vessel that is associated with Λi, is given by Ri and the corresponding surface is denoted by
Γi. In fact, Γi is the surface of the cylinder whose center line is given by Λi, i.e.,

Γi = {x ∈ Ω | dist(x,Λi(si)) = Ri, si ∈ (0, 1)} .

According to the definition of Λ, the total surface Γ is given by the union of the single vessel surfaces,
i.e., Γ =

⋃N
i=1 Γi.

2.2. Constituents

After introducing the domains on which the 1D and 3D models are defined, we describe in a next step

all the dependent variables occurring in our model.
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Fig. 2. Modeling a blood vessel network (a) by means of a 1D graph-like structure (c). At first the surface of the blood vessels is
pproximated by cylinders with constant radius whose surfaces are denoted by Γi, see (b). Then, the blood vessels are lumped to the
enter lines Λi of the cylinders.

The tumor cell’s field, ϕT = ϕT (t, x), can be represented as the sum of three components, ϕT =
P + ϕH + ϕN , where ϕP = ϕP (t, x) is the volume fraction of proliferative cells, ϕH = ϕH(t, x) that of
ypoxic cells, and ϕN = ϕN (t, x) is the volume fraction of necrotic cells. Proliferative cells are those which

have a high probability of mitosis, division into twin cells, and to produce growth of tumor. Hypoxic cells
are those tumor cells deprived of sufficient nutrient (e.g., oxygen) to become or remain proliferative and
necrotic cells have died due to the lack of nutrients. The local nutrient concentration is represented by a field
ϕσ = ϕσ(t, x). The tumor cells response to hypoxia (e.g., low oxygen), i.e., ϕσ is below a certain threshold,
by the production of an enzyme (hypoxia-inducible factor) that accumulates and increases cell mobility and
activates the secretion of angiogenesis promoting factors characterized by another field, ϕTAF = ϕTAF (t, x),
tumor angiogenesis factor. Of several such factors, that most frequently addressed, is VEGF, Vascular
Endothelial Growth Factor, which induces sprouting of endothelial cells forming the tubular structure of
blood vessels, the lumins, which grow into new vessels that supply nutrient to the hypoxic cells. In this
article, we treat a stationary network of endothelial cells and neglect the sprouting.

Moreover, at lower oxygen levels the hypoxic cells release matrix-degenerative enzymes such urokinase-
plasminogen and matrix metalloproteinases, labeled MDEs, with volume fraction denoted by ϕ =
MDE
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ϕMDE(t, x), that can erode the extracellular matrix, whose density is denoted by ϕECM = ϕECM (t, x), and
ake room for invasion of tumor cells, increasing ϕT in the ECM domain and increasing the likelihood of

metastasis. Below a certain level of nutrient, or sustained periods of hypoxia, cells may die and enter the
necrotic phase represented by the field ϕN . In many forms of cancer, necrotic cells undergo calcification and
become inert and can be removed as waste from the organism.

On the one-dimensional network Λ, we consider the constituents ϕv = ϕv(t, s) and vv = vv(t, s), which
represent the one-dimensional counter-part of the local nutrient concentration ϕσ and the volume-averaged
velocity v. In addition, we consider both in the vascular system and the tissue domain pressure variables
that are denoted by pv and p, respectively. The different constituents are coupled by the source terms of the
different partial differential equations governing the behavior of the constituents.

For convenience, we collect the constituents within the following 7-tuple:

ϕ = (ϕP , ϕH , ϕN , ϕσ, ϕMDE , ϕTAF , ϕECM ) = (ϕα)α∈A,

where A = {P, H, N, σ, ECM, MDE, TAF}, and further, we distinguish between the tumor phase-field
indices CH = {P, H, N}, the reaction–diffusion indices RD = {σ, MDE, TAF} and the evolution index
{ECM}, which corresponds to an abstract ordinary differential equation.

2.3. Three-dimensional model

The constituents ϕα, α ∈ A, are governed by the following mass balance law, see e.g., [5,26],

∂tϕα + div(ϕαvα) = −divJα(ϕ) + Sα(ϕ), (1)

for all α ∈ A, where vα is the cell velocity of the αth constituent, and Sα describes a mass source term
depending on all species ϕ. Moreover, Jα denotes the flux of the αth constituent, which is given by

Jα(ϕ) = −mα(ϕ)∇µα. (2)

Here, µα denotes the chemical potential of the αth species and mα the mobility function of it. In our
applications, we consider the mobilities

mα(ϕ) = Mαϕ2
α(1 − ϕα)2Id, α ∈ CH,

mβ(ϕ) = MβId, β ∈ RD,

mECM (ϕ) = 0,

here Mα are mobility constants and Id is the (d × d)-dimensional identity matrix. Especially, we choose
ECM = 0 in accordance to the non-diffusivity of the ECM, see [27]. Following [5,14,16,26], we define the

hemical potential as
µα = δE(ϕ)

δϕα
,

here δE/δϕα denotes the first variation (Gâteaux derivative) of the Ginzburg–Landau–Helmholtz free
energy functional,

E(ϕ) =
∫
Ω

{
Ψ(ϕP , ϕH , ϕN ) +

∑
α∈CH

ε2
α

2 |∇ϕα|2 +
∑

β∈RD

Dβ

2 ϕ2
β − (χcϕσ + χhϕECM )

∑
α∈{P,H}

ϕα

}
dx. (3)

Here, χc is the chemotaxis parameter, see [28], χh represents the haptotaxis parameter, see [12,29], and εα,
α ∈ CH, is a parameter associated with the interface thickness separating the different cell species. Lastly,
Ψ represents a double-well potential, e.g., it can be of Landau type, where we mention the three possibilities

Ψ(ϕP , ϕH , ϕN ) = CΨT
ϕ2

T (1 − ϕT )2,

Ψ(ϕP , ϕH , ϕN ) = CΨP
ϕ2

P (1 − ϕP )2 + CΨH
ϕ2

H(1 − ϕH)2 + CΨN
ϕ2

N (1 − ϕN )2 + CΨT
ϕ2

T (1 − ϕT )2,
2 2 2 2 2 2
Ψ(ϕP , ϕH , ϕN ) = CΨP

ϕP (1 − ϕT ) + CΨH
ϕH(1 − ϕT ) + CΨN

ϕN (1 − ϕT ) ,
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H

where CΨα are appropriate prefactors. Alternatively, one can also select a logarithmic potential of Flory–

uggins type, e.g., see [30,31],

Ψ(ϕP , ϕH , ϕN ) = CΨP
ϕP log ϕP + CΨH

ϕH log ϕH + CΨN
ϕN log ϕN + CΨT

(1 − ϕT ) log(1 − ϕT )

+ 1
2
(
CΨP

ϕP (1 − ϕP ) + CΨH
ϕH(1 − ϕH) + CΨN

ϕN (1 − ϕN ) + CΨT
ϕT (1 − ϕT )

)
.

Lastly, we also mention potentials, which are used for abstract multiphase models, see [15],

Ψ(ϕP , ϕH , ϕN ) = CΨP
ϕ2

P ϕ2
H + CΨH

ϕ2
Hϕ2

N + CΨN
ϕ2

N ϕ2
P ,

The chemical potentials read

µα = ∂ϕαΨ(ϕP , ϕH , ϕN ) − ε2
α∆ϕα − χcϕσ − χhϕECM , α ∈ CH\{N},

µβ = Dβϕβ , β ∈ RD\{σ},

µN = ∂ϕN
Ψ(ϕP , ϕH , ϕN ) − ε2

α∆ϕN ,

µσ = Dσϕσ − χc(ϕP + ϕH),
µECM = −χh(ϕP + ϕH).

(4)

The necrotic cells are non-moving and only gain mass from the nutrient-lacking hypoxic cells. Therefore,
the mobility of the necrotic cells is set to zero. Consequently, we have mN = vN = 0. Consequently, inserting
(2) and (4) into the mass balance equation (1), we arrive at the equations for (ϕα)α∈CH

∂tϕP + div(ϕP v) = div(mP (ϕ)∇µP ) + SP (ϕ),
µP = ∂ϕP

Ψ(ϕP , ϕH , ϕN ) − ε2
P∆ϕP − χcϕσ − χhϕECM ,

∂tϕH + div(ϕHv) = div(mH(ϕ)∇µH) + SH(ϕ),
µH = ∂ϕH

Ψ(ϕP , ϕH , ϕN ) − ε2
H∆ϕH − χcϕσ − χhϕECM ,

∂tϕN = SN (ϕ).

(5)

Further, we propose the source functions

SP (ϕ) = λP ϕσϕP (1 − ϕT ) − λAϕP − λPHH(σPH − ϕσ)ϕP + λHP H(ϕσ − σHP )ϕH ,

SH(ϕ) = λPh
ϕσϕH(1 − ϕT ) − λAh

ϕH + λPHH(σPH − ϕσ)ϕP − λHP H(ϕσ − σHP )ϕH

− λHN H(σHN − ϕσ)ϕH ,

SN (ϕ) = λHN H(σHN − ϕσ)ϕH .

(6)

In (5), v = vα is a volume-averaged velocity for the fields ϕP and ϕH . In (6), λP is the rate of cellular mitosis
of tumor cells, λA and λAh

are the apoptosis rates of the proliferative and hypoxic cells, respectively, λPh

is the proliferation rate of hypoxic cells, λPH the transition rate from the proliferative to the hypoxic phase
below the nutrient level σPH , λHP the transition rate from the hypoxic to the proliferative phase above the
nutrient level σHP , and λHN the transition rate from the hypoxic to the necrotic phase below the nutrient
level σHN . Finally, H denotes the Heaviside step function.

Related models of extracellular matrix (ECM) degradation due to matrix-degenerative enzymes (MDEs)
released by hypoxic cell concentrations and subsequent tumor invasion and metastasis are discussed
in [32–37]. Following these references, we introduce the equation for the ECM evolution,

∂tϕECM = SECM (ϕ)
= −λECMD

ϕECM ϕMDE + λECMP
ϕσ(1 − ϕECM )H(ϕECM − ϕECMP

),
(7)

where λECMD
is the degradation rate of ECM fibers due to the matrix degrading enzymes, and λECMP

is
the production rate of ECM fibers above the threshold level ϕ for the ECM density.
ECMP
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Further, for (ϕβ)β∈RD we arrive at the following system of equations

∂tϕσ + div(ϕσv) = div(mσ(ϕ))(Dσ∇ϕσ − χc∇(ϕP + ϕH)) + Sσ(ϕ) + Sσv(ϕσ, p, ϕv, pv),
∂tϕMDE = div(mMDE(ϕ)DMDE∇ϕMDE) + SMDE(ϕ),
∂tϕTAF = div(mTAF (ϕ)DTAF ∇ϕTAF ) + STAF (ϕ),

(8)

with source functions
Sσ(ϕ) = −λP ϕσϕP (1 − ϕT ) − λPh

ϕσϕH(1 − ϕT ) + λAϕP + λAh
ϕH + λECMD

ϕECM ϕMDE

− λECMP
ϕσ(1 − ϕECM )H(ϕECM − ϕECMP

),

SMDE(ϕ) = −λMDED
ϕMDE + λMDEP

(ϕP + ϕH)ϕECM
σHP

σHP + ϕσ
(1 − ϕMDE) − λECMD

ϕECM ϕMDE ,

STAF (ϕ) = λTAFP
(1 − ϕTAF )ϕHH(ϕH − ϕHP

) − λTAFD
ϕTAF .

(9)

Here, λMDED
and λTAFD

denote the decay rates of the MDEs and TAFs, respectively, λMDEP
the production

rate of MDEs, and λTAFP
is the production rate of the ϕTAF due to the release by hypoxic cells above a

threshold value of ϕHP
. We note that the cell species ϕα, α ∈ {P, H, N, σ, ECM}, form a mass conserving

subsystem in the sense that their source terms add to zero. The fields ϕMDE and ϕTAF do not belong to this
mass exchanging closed subsystem system since they show natural degradation factors.

Additionally, we have introduced a source term Sσv in (8) for the nutrient volume fraction ϕσ, which
depends on the 1D constituents ϕv and pv, and therefore, this source term is responsible for the coupling
between the constituents in Ω and Λ. In particular, it governs the exchange of nutrients between the vascular
network and the tissue. In order to quantify the flux of nutrients across the vessel surface, we use the
Kedem–Katchalsky law, see e.g., [7],

Jσv(ϕσ, p, ϕv, pv) = (1 − rσ)Jpv(p, pv)ϕv
σ + Lσ(ϕv − ϕσ), (10)

here Jσv represents the flux of nutrients between the vascular network and the tissue. The Kedem–
atchalsky law (10) consists of two parts: The first part quantifies the nutrient flux caused by the flux
f blood plasma Jpv from the vessels into the tissue or vice versa. It is determined by Starling’s law, which
s given by the pressure difference between pv and p weighted by a parameter Lp for the permeability of the
vessel wall,

Jpv(p, pv) = Lp(pv − p). (11)

ere, p denotes an averaged pressure over the circumference of cylinder cross-sections. For each parameter si,
e consider a point on the curve Λi(si). Around this point a circle ∂BRi

(si) of radius Ri and perpendicular
o Λi is constructed and the tissue pressure p is averaged with respect to ∂BRi

(si),

p(si) = 1
2πRi

∫
∂BRi

(si)
p|Γ (x) dS.

From a physical point of view, the averaging reflects the fact that the 3D–1D coupling is a reduced model,
whereas in a fully coupled 3D–3D model, the exchange occurs through the surface.

In order to account for the permeability of the vessel wall with respect to the nutrients, Jpvϕv
σ is weighted

by a factor 1 − rσ, where rσ is considered as a reflection parameter. The value of ϕv
σ is either set to ϕσ or

ϕv depending on the sign of Jpv,

ϕv
σ =

{
ϕv, pv ≥ p,

ϕσ, pv < p.

he second part of the law (10) is a Fickian type law, accounting for the tendency of the nutrients to balance
ut their concentration levels. Again, the 3D quantity ϕσ has to be averaged such that it can be related to
he 1D quantity ϕv,

ϕσ(si) = 1
2πR

∫
ϕσ|Γ (x) dS.
i ∂BRi
(si)

7
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The permeability of the vessel wall is represented by another parameter Lσ.
Since the exchange processes between the vascular network and the tissue occur at the vessel surface Γ , we

oncentrate the flux Jσv by means of the Dirac measure δΓ , i.e., with the distributional space D′ = (C∞
c (Ω))′

we define
⟨δΓ , φ⟩D′×D =

∫
Γ

φ|Γ (x) dS for all φ ∈ D.

This yields the following source term in (8),

Sσv(ϕσ, p, ϕv, pv) = Jσv(ϕσ, p,ΠΓϕv,ΠΓpv)δΓ ,

where ΠΓ ∈ L(L2(Λ); L2(Γ )) is the projection of the 1D quantities onto the cylindrical surface Γ via
extending the function value ΠΓϕv(s) = ϕv(si) for all s ∈ ∂BRi

(si). In particular, we have∫
∂BRi

(si)
ΠΓϕv(x) dS = 2πRiϕv(si).

We assume a volume-averaged velocity v for the proliferative cells, hypoxic cells, and the nutrients. This
assumption of a volume-averaged velocity is reasonable since the cells are tightly packed. Therefore, we
assume v to obey the compressible Darcy law

v = −K(∇p − Sp(ϕ, µP , µH)),
−div(K∇p) = Jpv(p,ΠΓpv)δΓ − div(KSp(ϕ, µP , µH)),

(12)

here K > 0 is the permeability and Jpv(p,ΠΓpv)δΓ models the flux between the vascular system and the
tissue. Moreover, the source Sp is assumed to represent a form of the elastic Korteweg force, e.g., see [30],
and we correct the chemical potential by the haptotaxis and chemotaxis adhesion terms as done in [15],
giving

Sp(ϕ, µP , µH) = −(∇µP + χc∇ϕσ + χh∇ϕECM )ϕP − (∇µH + χc∇ϕσ + χh∇ϕECM )ϕH . (13)

Collecting (5)–(12), we arrive at a model governed by the system,

∂tϕP + div(ϕP v) = div(mP (ϕ)∇µP ) + SP (ϕ),
µP = ∂ϕP

Ψ(ϕP , ϕH , ϕN ) − ε2
P∆ϕP − χcϕσ − χhϕECM ,

∂tϕH + div(ϕHv) = div(mH(ϕ)∇µH) + SH(ϕ),
µH = ∂ϕH

Ψ(ϕP , ϕH , ϕN ) − ε2
H∆ϕH − χcϕσ − χhϕECM ,

∂tϕN = SN (ϕ),
∂tϕσ + div(ϕσv) = div(mσ(ϕ))(Dσ∇ϕσ − χc∇(ϕP + ϕH)) + Sσ(ϕ) + Jσv(ϕσ, p,ΠΓϕv,ΠΓpv)δΓ ,

∂tϕMDE = div(mMDE(ϕ)DMDE∇ϕMDE) + SMDE(ϕ),
∂tϕTAF = div(mTAF (ϕ)DTAF ∇ϕTAF ) + STAF (ϕ),

∂tϕECM = SECM (ϕ),
v = −K(∇p − Sp(ϕ, µP , µH)),

−div(K∇p) = Jpv(p,ΠΓpv)δΓ − div(KSp(ϕ, µP , µH)),

(14)

in the time–space domain (0, T )×Ω with source functions SP , SH , SN , Sσ, SMDE , STAF , SECM , Sp, recall (6),
(9) and (13), with properties laid down in Assumption 1 of Section 4. We supplement the system with the
following boundary and initial conditions,

mα(ϕ)∂nµα − ϕαv · n = mβ(ϕ)∂nϕβ = ∂nϕγ = 0 on (0, T ) × ∂Ω ,

p = p∞ on(0, T ) × ∂ΩD,

∂np = 0 on(0, T ) × ∂Ω\∂ΩD,
(15)
ϕδ(0) = ϕδ,0 in Ω ,

8
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for α ∈ {P, H}, β ∈ RD, γ ∈ CH ∪ {ECM}, and δ ∈ A. Here, ϕδ,0 are given functions with regularity as
in Assumption 1 of Section 4, ∂nf = ∇f · n denotes the normal derivative of a function f at the boundary
∂Ω with the outer unit normal n and ∂ΩD is a part of the boundary with positive measure representing an
inlet where the pressure is set to the time-dependent function p∞ : (0, T ) × Ω → R.

2.4. One-dimensional model for flow and nutrient transport in the vascular network

Since the vascular network typically forms a system of small inclusions, we average all the physical units
across the cross-sections of the single blood vessels and set them to a constant with respect to the angular
and radial component. This means that the 1D variables ϕv and pv on a 1D vessel Λi depend only on si. For
further details related to the derivation of 1D pipe flow and transport models, we refer to [38]. Accordingly,
the 1D model equations for flow and transport on Λi read as follows,

∂tϕv + ∂si
(vvϕv) = ∂si

(mv(ϕv)Dv∂si
ϕv) − 2πRiJσv(ϕσ, p, ϕv, pv),

− ∂si
(R2

i πKv,i ∂si
pv) = −2πRiJpv(p, pv).

(16)

s in (14), the fluxes Jσv and Jpv account for the exchange processes between the blood vessels and the
tissue. The permeability is given by the relation Kv,i = R2

i
8µbl

, where µbl represents the viscosity of blood.
or convenience, we fix it to a constant value, i.e., the non-Newtonian behavior of blood is not considered

n this work. The diffusivity parameter Dv is the same as the one of the nutrients in the blood. The blood
elocity vv is calculated as follows via a Darcy-type model,

vv = −R2
i πKv,i∂si

pv.

In order to interconnect the different solutions on Λi at inner networks nodes on intersections x ∈ ∂Λi\∂Λ,
e require the continuity of pressure and concentration as well as the conservation of mass to obtain a
hysically relevant solution. To formulate these coupling conditions in a mathematical way, we define for
ach bifurcation point x an index set N(x) ⊂ {1, . . . , N}:

N(x) = { i | x ∈ ∂Λi, i ∈ {1, . . . , N}} .

sing this notation, we have for pv and ϕv four different coupling conditions at an inner node x ∈ ∂Λi:

1. Continuity of pv:
pv

⏐⏐
Λi

(x) = pv

⏐⏐
Λj

(x) for all j ∈ N(x) \ {i} .

2. Mass conservation with respect to pv: ∑
j∈N(x)

−
R4

j π

8µbl

∂pv

∂sj

⏐⏐⏐⏐
Λj

(x) = 0.

3. Continuity of ϕv:
ϕv

⏐⏐
Λi

(x) = ϕv

⏐⏐
Λj

(x) for all j ∈ N(x) \ {i} .

4. Mass conservation with respect to ϕv:∑
j∈N(x)

(
vvϕv − mv(ϕv)Dv

∂ϕv

∂sj

) ⏐⏐⏐⏐
Λj

(x) = 0.

urther, we decompose the boundary of Λ into a Dirichlet boundary ∂ΛD and a Neumann boundary ∂ΛN

uch that ∂Λ = ∂ΛD ∪̇ ∂ΛN . We introduce the inlet functions ϕv,∞, pv,∞ : (0, T ) → R on ∂ΛD and prescribe
the following boundary data for ϕv and pv,

ϕv − ϕv,∞ = pv − pv,∞ = 0 on (0, T ) × ∂ΛD,

∂nΛ
ϕv = ∂nΛ

pv = 0 on (0, T ) × ∂ΛN .
(17)
9
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3. Analytical preliminaries

Notationally, we equip the function spaces Lp(Ω), Lp(Λ), W m,p(Ω), W m,p(Λ) with the norms | · |Lp(Ω),
· |Lp(Λ), | · |W m,p(Ω), | · |W m,p(Λ). In the case of d-dimensional vector functions, we write Lp(Ω ;Rd) and in

the same way for the other Banach spaces, but we do not make this distinction in the notation of norms,
scalar products and applications with its dual.

Throughout this paper, C < ∞ stands for a generic constant, which may change from line to line. For
brevity, we write x ≲ y for x ≤ Cy. We recall the Poincaré–Wirtinger and Sobolev inequalities, see [39–41],

|f − fΩ |Lp(Ω) ≲ |∇f |Lp(Ω) for all f ∈ W 1,p(Ω),
|f |Lp(Ω) ≲ |∇f |Lp(Ω) for all f ∈ W 1,p

0 (Ω),

|f |W m,q(Ω) ≲ |f |W k,p(Ω) for all f ∈ W k,p(Ω), k − d

p
≥ m − d

q
, k ≥ m,

(18)

here p, q ∈ [1, ∞) and fΩ = 1
|Ω|
∫
Ω

f(x) dx denotes the mean of f with respect to Ω . Also, the last inequality
ields the continuous embedding W k,p(Ω) ↪→ W m,q(Ω).

For a given Banach space X, we define the Bochner space, see e.g., [42],

Lp(0, T ; X) = {u : (0, T ) → X : u is strongly measurable,
∫ T

0
|u(t)|pX dt < ∞},

here 1 ≤ p < ∞, with the norm ∥u∥p
LpX =

∫ T

0 |u(t)|pX dt. For p = ∞, we equip L∞(0, T ; X) with the norm
∥u∥L∞X = ess supt∈(0,T )|u(t)|X . Moreover, we introduce the Sobolev–Bochner space,

W 1,p(0, T ; X) = {u ∈ Lp(0, T ; X) : ∂tu ∈ Lp(0, T ; X)}.

Let X, Y , Z be Banach spaces such that X is compactly embedded in Y , and Y is continuously embedded
n Z, i.e., X ↪↪→ Y ↪→ Z. In the proof of the existence theorem below, we make use of the Aubin–Lions–Simon
ompactness lemma, see [43, Corollary 4],

Lp(0, T ; X) ∩ W 1,1(0, T ; Z) ↪↪→ Lp(0, T ; Y ), 1 ≤ p < ∞,

L∞(0, T ; X) ∩ W 1,r(0, T ; Z) ↪↪→ C0([0, T ]; Y ), r > 1,
(19)

here we equip an intersection space X ∩ Y with the norm ∥ · ∥X∩Y = max{∥ · ∥X , ∥ · ∥Y }. Further, we make
se of the following continuous embeddings, see [44, Theorem 3.1, Chapter 1],

L2(0, T ; Y ) ∩ H1(0, T ; Z) ↪→ C0([0, T ]; [Y, Z]1/2),
L∞(0, T ; Y ) ∩ Cw([0, T ]; Z) ↪→ Cw([0, T ]; Y ),

(20)

here [Y, Z]1/2 denotes the interpolation space between Y and Z, see [44, Definition 2.1, Chapter 1] for more
etails. Also, Cw([0, T ]; Y ) denotes the space of the weakly continuous functions on the interval [0, T ] with
alues in Y .

We note the following special case of the Gagliardo–Nirenberg inequality, see [45, Lemma II.2.33],

|f |Lp(Ω) ≲ |f |αH1(Ω)|f |1−α
L2(Ω) for all f ∈ H1(Ω), 1

p
= 1

2 − α

3 , α ∈ [0, 1],

hich gives in a time-dependent setting, choosing α = 2/q with q ≥ 2,

∥u∥q
Lq(0,T ;Lp(Ω)) =

∫ T

0
|u(t)|qLp(Ω) dt ≲

∫ T

0
|u(t)|qα

H1(Ω)|u(t)|q(1−α)
L2(Ω) dt

=
∫ T

0
|u(t)|2H1(Ω)|u(t)|q−2

L2(Ω) dt

≤ ∥u∥2
L2(0,T ;H1(Ω))∥u∥q−2

L∞(0,T ;L2(Ω))
q

(21)
≤ (max{∥u∥L∞(0,T ;L2(Ω)), ∥u∥L2(0,T ;H1(Ω))}) .

10
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In particular, it yields the continuous embedding

L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ↪→ Lq(0, T ; Lp(Ω)), 1
p

+ 2
3q

= 1
2 .

We also make use of the classical Grönwall–Bellman lemma in the energy estimates to absorb solution-
ependent terms on the right hand side of the energy inequalities.

emma 1 (Grönwall–Bellman, cf. [45, Lemma II.4.10]). Let u ∈ L∞(0, T ), g ∈ L1(0, T ;R≥0) and u0 ∈ R.
f we have

u(t) ≤ u0 +
∫ t

0
g(s)u(s) ds for a.e. t ∈ (0, T ),

hen it holds u(t) ≤ u0 exp(
∫ t

0 g(s) ds) for almost every t ∈ (0, T ).

. Existence of solutions

In this section, we lay down some general assumptions on the model that are in force throughout this
aper. Under these assumptions, we state the definition of a weak solution, and we then state a theorem,
hich provides the existence of a weak solution.
For simplicity, we write

Sα = Sα(ϕ), mβ = mβ(ϕ), Ψ = Ψ(ϕP , ϕH , ϕN ),
Jpv = Jpv(p, pv), Jpv,Γ = Jpv(p,ΠΓpv), Jσv = Jσv(ϕσ, p, ϕv, pv), Jσv,Γ = Jσv(ϕσ, p,ΠΓϕv,ΠΓpv),

where α ∈ A and β ∈ A\{N, ECM}. We introduce the scaled parameters R̃ = 2πRi and K̃v = R2
i πKv,i in

order to express the 1D model (16) in a shorter way. Moreover, we define the cut-off operator

C(x) = max{0, min{1, x}}. (22)

Moreover, we introduce the following abbreviations for frequently appearing function spaces,

V = H1(Ω) ↪→ H = L2(Ω) ↪→ V ′ = (H1(Ω))′,

V0 = H1
D(Ω) ↪→ H = L2(Ω) ↪→ V ′

0 = (H1
D(Ω))′,

W = W 1,3/2(Ω) ↪→ H = L2(Ω) ↪→ W ′ = (W 1,3/2(Ω))′,

X = H1(Λ) ↪→ Y = L2(Λ) ↪→ X ′ = (H1(Λ))′,

X0 = H1
D(Λ) ↪→ Y = L2(Λ) ↪→ X ′

0 = (H1
D(Λ))′,

here we have denoted the Sobolev space of vanishing trace on ∂ΩD ⊂ ∂Ω by H1
D(Ω) = {u ∈ H1(Ω) :

|∂ΩD
= 0} and in the same way H1

D(Λ) = {u ∈ H1(Λ) : u|∂ΛD
= 0}. We equip these spaces of vanishing

race with the norms | · |V0
= |∇ · |H and | · |X0

= |∇Λ · |Y , respectively. Here, we use the notation ∇Λ for
he space derivative of the 1D fields.

The space W with the Lebesgue order 3/2 becomes useful in the application of the Hölder inequality.
ndeed, we have the relation 2

3 = 1
6 + 1

2 , and therefore, we obtain

|uφ|L3/2(Ω) ≤ |u|L6(Ω)|φ|H ≲ |u|V |φ|H for all u ∈ V, φ ∈ H,

where we also applied the Sobolev embedding theorem V ↪→ L6(Ω) in the three-dimensional domain Ω .
Hence, we have for all u, φ ∈ V ,

|uφ|W =
(

|uφ|3/2
L3/2(Ω)

+ |∇(uφ)|3/2
L3/2(Ω)

)2/3
≤ |uφ|L3/2(Ω) + |∇(uφ)|L3/2(Ω) ≲ |u|V |φ|V , (23)

where we used the Bernoulli inequality to obtain (a + b)r ≤ ar + br with a, b ≥ 0, r ∈ [0, 1].
11
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Assumption 1.

(A1) Ω ⊂ R3 is a bounded domain with C1,1-boundary, Λ is a 1D structure as depicted in Fig. 2c, Γ is the
2D associated cylindrical surface, see Fig. 2d, and T > 0 denotes a finite time horizon,

(A2) ϕα,0 ∈ V for all α ∈ CH ∪ {ECM}, ϕβ,0 ∈ H for all β ∈ RD, ϕv,0 ∈ Y , ϕv,∞, pv,∞ ∈ H1(0, T ) ⊂
C([0, T ]) and p∞ ∈ H1(0, T ; H) ∩ L2(0, T ; V ) ⊂ C([0; T ]; H),

(A3) χc, χh ≥ 0 and εα, Dβ , Cσ,K̃v, R̃ > 0 for α ∈ {P, H}, β ∈ RD,
(A4) Sα are of the form

Sα(ϕ) =
∑
γ∈A

ϕγfα,γ(ϕ), α ∈ A\{N, ECM},

Sβ(ϕ) = fβ(ϕ), β ∈ {N, ECM},

Sp(ϕ, µP , µH) = −C(ϕP )(∇µP + χc∇ϕσ + χh∇ϕECM )
− C(ϕH)(∇µH + χc∇ϕσ + χh∇ϕECM ),

where fα,γ ∈ Cb(R|A|), fβ ∈ Lip(R|A|) ∩ PC1(R|A|), such that |fα,γ |, |fβ |, |∂ϕγ fβ | ≤ f∞ for all
α ∈ A\{N, ECM}, β ∈ {N, ECM}, γ ∈ A,

(A5) Jpv and Jσv are of the form

Jpv(y1, y2) = Lp(y2 − y1),
Jσv(x1, y1, x2, y2) = fσ,v(x1, x2)Jpv(y1, y2) + Lσ(x2 − x1),

where fσ,v ∈ Cb(R2) such that |fσ,v(x)| ≤ f∞ for all x ∈ R2 and Lp, Lσ, K ≥ 0 are sufficiently small
in the sense that the prefactors in (53) are positive,

(A6) mα ∈ Cb(R|A|) such that 0 < m0 ≤ mα(x) ≤ m∞ for all x ∈ R|A| for all α ∈ A\{N, ECM},
(A7) Ψ ∈ C1(R3) non-negative such that Ψ(0, 0, 0) = Ψ ′(0, 0, 0) = 0, and there are constants CΨj

,
j ∈ {1, . . . , 3}, such that for all (x, y, z) ∈ R3 it holds

Ψ(x, y, z) ≥ CΨ1(|x|2 + |y|2 + |z|2) − CΨ2 ,

|∂xΨ(x, y, z)|, |∂yΨ(x, y, z)|, |∂zΨ(x, y, z)| ≤ CΨ3(1 + |x| + |y| + |z|).

Remarks on the assumptions:

(A4) After a suitable reformulation of the source functions (6) and (9) with the cut-off operator C,
see (22), and replacing the Heaviside functions by the continuous Sigmoid function, the source
functions can be brought into the form as stated in assumption (A4). Further, the assumption
fβ ∈ Lip(R|A|) ∩ PC1(R|A|), β ∈ {N, ECM}, ensures the validity of the chain rule if fβ is composed
with a vector-valued Sobolev function; see [46,47]. In particular, we have for all α ∈ A,

(∇fβ(ϕ), ∇ϕα)H =
∑
γ∈A

(∂ϕγ fβ(ϕ)∇ϕγ , ∇ϕα)H ≤ f∞
∑
γ∈A

|∇ϕγ |H |∇ϕα|H .

(A5) We consider the unique, linear and continuous trace operator, see [48],

trΓ : W → W 1/3,3/2(Γ ) such that trΓu = u|Γ for u ∈ C∞(Ω),

onto the two dimensional associated cylindrical surface Γ of the one-dimensional network Λ, see Fig. 2.
In two dimensions, we can apply the Sobolev embedding theorem to obtain W 1/3,3/2(Γ ) ↪→ L2(Γ ),
12
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see (18). Note that this embedding does not hold in three dimensions. Consequently, we have

∥δΓ∥W ′ = sup
|φ|W ≤1

|⟨δΓ , φ⟩W | = sup
|φ|W ≤1

⏐⏐⏐ ∫
Γ

trΓφ(s) ds
⏐⏐⏐ ≤ sup

|φ|W ≤1
|trΓφ|L1(Γ)

≤ C
L1(Γ)
W 1/3,3/2(Γ)

|trΓ |L(W ;W 1/3,3/2(Γ)),

where C
L1(Γ)
W 1/3,3/2(Γ)

denotes the embedding constant from W 1/3,3/2(Γ ) ↪→ L1(Γ ). Therefore, we have
δΓ ∈ W ′ and in the following existence proof we often apply the estimate for φ ∈ W

⟨δΓ , Jαv,Γφ⟩W =
∫
Γ

Jαv,Γ trΓφ(s) ds ≤ |Jαv,Γ |L2(Γ)|trΓφ|L2(Γ) ≤ CΓ |Jαv,Γ |L2(Γ)|φ|W , (24)

for α ∈ {σ, p}, where
CΓ = C

L2(Γ)
W 1/3,3/2(Γ)

|trΓ |L(W ;W 1/3,3/2(Γ)).

Further, we can estimate the fluxes by
|Jpv,Γ |L2(Γ) ≤ Lp(CΓ |p|W + |ΠΓ |L(Y ;L2(Γ))|pv|Y ),
|Jσv,Γ |L2(Γ) ≤ f∞Lp(CΓ |p|W + |ΠΓ |L(Y ;L2(Γ))|pv|Y ) + Lσ(CΓ |ϕσ|W + |ΠΓ |L(Y ;L2(Γ))|ϕv|Y ).

(25)

The assumption of smallness of Lp and Lσ is generally accepted in the analysis of very weak solution
of the stationary Navier–Stokes equation. There, one also considers a distributional divergence, which
should be sufficiently small, see [49]. Additionally, in [50] the authors have shown well-posedness of
an abstract stationary 3D–1D model if the prefactor of the Dirac delta functional is sufficiently small.

(A7) The assumption on the potential Ψ is quite typical in the analysis of Cahn–Hilliard equations, see
also [12,13]. In order to take the fourth order polynomial (x + y + z)2(1 − x − y − z)2, we have to
extend it by a quadratic function outside of the interval [0, 1], i.e.,

Ψ(x, y, z) =

⎧⎪⎨⎪⎩
(x + y + z)2, x + y + z < 0,

(x + y + z)2(1 − x − y − z)2, x + y + z ∈ [0, 1],
(1 − x − y − z)2, x + y + z > 1,

and one can show that Ψ ∈ C2(R3;R).
We invoke from (A7) and the fundamental lemma of calculus the upper estimate

Ψ(x, y, z) = Ψ(0, y, z) +
∫ x

0
∂xΨ(x̃, y, z) dx̃

= Ψ(0, 0, 0) +
∫ x

0
∂xΨ(x̃, y, z) dx̃ +

∫ y

0
∂yΨ(0, ỹ, z) dỹ +

∫ z

0
∂zΨ(0, 0, z̃) dz̃

≲ 1 + |x|2 + |y|2 + |z|2.

(26)

We define a weak solution of the coupled 3D–1D system, see (14) and (16), in the following way.

Definition 1 (Weak Solution). We call the tuple (ϕ, µP , µH , v, p, ϕv, vv, pv) a weak solution of (14) and (16)
with boundary data (15) and (17) if the functions ϕ : (0, T )×Ω → R|A|, µP , µH , v, p, ϕv, vv, pv : (0, T )×Ω →
R have the regularity

ϕα ∈ H1(0, T ; V ′) ∩ L∞(0, T ; V ), α ∈ {P, H},

µα ∈ L2(0, T ; V ), α ∈ {P, H},

ϕβ ∈ H1(0, T ; H) ∩ L∞(0, T ; V ), β ∈ {N, ECM},

ϕγ ∈ H1(0, T ; V ′) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ), γ ∈ RD,

(v, p − p∞) ∈ L2((0, T ) × Ω ;R3) × L2(0, T ; V0),
ϕv − ϕv,∞ ∈ H1(0, T ; X ′

0) ∩ L∞(0, T ; Y ) ∩ L2(0, T ; X0),
2 2

(27)
(vv, pv − pv,∞) ∈ L (0, T ; Y ) × L (0, T ; X0),
13
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fulfill the initial data ϕα(0) = ϕα,0, α ∈ A, ϕv(0) = ϕv,0, and satisfy the following variational form of (14),

⟨∂tϕP , φ1⟩W 1,3(Ω) − (C(ϕP )v, ∇φ1)H + (mP ∇µP , ∇φ1)H = (SP , φ1)H ,

−(µP , φ2)H + (∂ϕP
Ψ , φ2)H + ε2

P (∇ϕP , ∇φ2)H = χc(ϕσ, φ2)H + χh(ϕECM , φ2)H ,

⟨∂tϕH , φ3⟩W 1,3(Ω) − (C(ϕH)v, ∇φ3)H + (mH∇µH , ∇φ3)H = (SH , φ3)H ,

−(µH , φ4)H + (∂ϕH
Ψ , φ4)H + ε2

H(∇ϕH , ∇φ4)H = χc(ϕσ, φ4)H + χh(ϕECM , φ4)H ,

(∂tϕN , φ5)H = (SN , φ5)H ,

⟨∂tϕσ, φ6⟩W 1,3(Ω) − (C(ϕσ)v, ∇φ6)H + Dσ(mσ∇ϕσ, ∇φ6)H = (Sσ, φ6)H + ⟨δΓ , Jσv,Γφ6⟩W

− χc(mσ∇(ϕP + ϕH), ∇φ6)H ,

⟨∂tϕMDE , φ7⟩V + DMDE(mMDE∇ϕMDE , ∇φ7)H = (SMDE , φ7)H ,

⟨∂tϕTAF , φ8⟩V + DTAF (mTAF ∇ϕTAF , ∇φ8)H = (STAF , φ8)H ,

⟨∂tϕECM , φ9⟩V = (SECM , φ9)H ,

(v, φ10)H = −K(∇p, φ10)H + K(Sp, φ10)H ,

K(∇p, ∇φ11)H = ⟨δΓ , Jpv,Γφ11⟩W + K(Sp, ∇φ11)H ,

(28)

for all φj ∈ V , j ∈ {1, . . . , 9}, φ10 ∈ L2(Ω ;R3), φ11 ∈ V0, and the variational form of (16),

⟨∂tϕv, φ12⟩X − (C(ϕv)vv, ∇Λφ12)Y + Dv(mv∇Λϕv, ∇Λφ12)Y = −R̃(Jσv, φ12)Y ,

(vv, φ13)Y = −K̃v(∇Λpv, φ13)Y ,

K̃v(∇Λpv, ∇Λφ14)Y = −R̃(Jpv, φ14)Y ,

(29)

for all φj ∈ X0, j ∈ {12, 14}, φ13 ∈ Y .

The initial data ϕα(0) = ϕα,0, α ∈ A, are well-defined with assumption (A2) on the regularity of the initial
data. Indeed, from the regularity given in (27), we achieve, by the embeddings (20), the continuity-in-time
regularity

ϕα ∈ C0([0, T ]; H) ∩ Cw([0, T ]; V ), α ∈ CH ∪ {ECM},

ϕβ ∈ C0([0, T ]; V ′) ∩ Cw([0, T ]; H), β ∈ RD,

ϕv ∈ C0([0, T ]; X ′
0) ∩ Cw([0, T ]; Y ),

and therefore, ϕα(0) is well-defined in H, ϕβ(0) in V ′ and ϕv(0) in X ′
0.

We use a mixed boundary approach for p, ϕv, pv, e.g., for the pressure p we define p̃ = p − p∞ with
p̃|∂ΩD

= 0 and (∂np̃ + ∂np∞)∂Ω\∂ΩD
= 0. Hence, we consider the partial differential equation

−div(K∇p̃) − div(K∇p∞) = δΓJpv,Γ − divSp,

with the weak form with the test function q ∈ V0

K(∇p̃ + ∇p∞, ∇q)H − K(∂np̃ + ∂np∞, q)L2(∂Ω) = ⟨δΓ , Jpv,Γ q⟩W + (KSp, ∇q)H − (KSp · n, q)L2(∂Ω),

or, after the cancellation of the boundary terms,

K(∇p, ∇q)H = ⟨δΓ , Jpv,Γ q⟩W + (KSp, ∇q)H .

The main result of this paper involves stating the existence of a weak solution of the 3D–1D model, see
(14) and (16), in the sense of Definition 1.
14
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V )
Theorem 1 (Existence of a Global Weak Solution). Let Assumption 1 hold. Then there exists a weak solution
uple (ϕ, µP , µH , p, ϕv, pv) to the 3D–1D model in the sense of Definition 1, which additionally satisfies the
nergy inequality

∥Ψ∥L∞(0,T ;L1(Ω)) +
∑

α∈CH∪{ECM}

∥ϕα∥2
L∞(0,T ;V ) +

∑
β∈{P,H}

∥µβ∥2
L2(0,T ;V ) +

∑
γ∈RD

∥ϕγ∥2
L∞(0,T ;H)∩L2(0,T ;

+ ∥v∥2
L2(0,T ;H) + ∥p∥2

L2(0,T ;V ) + ∥ϕv∥2
L∞(0,T ;Y )∩L2(0,T ;X) + ∥vv∥2

L2(0,T ;Y ) + ∥pv∥2
L2(0,T ;X)

≲ 1 + |ϕv,0|2Y +
∑

α∈CH∪{ECM}

|ϕα,0|2V +
∑

β∈RD

|ϕβ,0|2H + ∥p∞∥2
L2(0,T ;V ) + |ϕv,∞|2H1(0,T ) + |pv,∞|2L2(0,T ).

(30)

5. Proof of Theorem 1

To prove the existence of a weak solution, we use the Faedo–Galerkin method [41] and semi-discretize the
original problem in space. The discretized model can be formulated as an ordinary differential equation
system and by the Cauchy–Peano theorem [51], we conclude the existence of a discrete solution, see
Section 5.1. Having derived energy estimates in Section 5.2, we deduce from the Banach–Alaoglu theorem
the existence of limit functions which eventually form a weak solution, see Section 5.3. This method is by
now standard in the analysis of tumor growth models, e.g., see [30,52–54]. Nevertheless, the novel nonlinear
coupling of the equations requires a thorough proof of the existence of a solution to the system.

5.1. Faedo–Galerkin discretization

We introduce the discrete spaces

Hk = span{h1, . . . , hk},

H0
k = span{h0

1, . . . , h0
k},

Yk = span{y1, . . . , yk},

where hj : Ω → R, h0
j : Ω → R, yj : Λ → R, j ∈ {1, . . . , k}, are the eigenfunctions to the eigenvalues

λh,j , λh0,j , λy,j ∈ R of the following respective problems

(∇hj , ∇v)H = λh,j(hj , v)H ∀v ∈ V,

(∇h0
j , ∇v)H = λh0,j(h0

j , v)H ∀v ∈ V0,

(∇yj , ∇v)Y = λy,j(yj , v)Y ∀v ∈ X0.

Since the inverse Neumann–Laplace operator is a compact, self-adjoint, injective, positive operator on L2
0(Ω),

we conclude by the spectral theorem, see e.g., [55, 12.12 and 12.13], that

{hj}j∈N is an orthonormal basis in H and orthogonal in V.

Therefore, ∪k∈NHk is dense in V . Additionally, {hj}j∈N is a basis in H2
N (Ω) = {u ∈ H2(Ω) : ∂nu =

0 on ∂Ω}, see [8].
Next, we investigate the inverse Dirichlet–Neumann Laplacian (−∆)−1|H : H → H, see, e.g., [56] for

the consideration of the Dirichlet–Neumann Laplacian in a Faedo–Galerkin approach. According to the
Lax–Milgram theorem, for all f ∈ H there exists a unique solution uf ∈ V0 to the problem
(∇uf , ∇v)H = (uf , f)H ∀v ∈ V0.

15
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Additionally, it holds |uf |V0
≲ |f |H for all f ∈ H and we can construct an operator T ∈ L(H; V0) with

Tf = uf . Since V0 is compactly embedded in H, we conclude the compactness of T ∈ L(H; H). Taking the
test function v = Tg for an arbitrary element g ∈ H, we obtain the self-adjointness of T ,

(Tg, f)H = (∇Tf, ∇Tg)H = (g, Tf)H ,

nd taking g = f yields the positivity of T ,

(Tf, f)H = |∇Tf |2H ≥ 0.

dditionally, T is injective, since Tf = 0 yields (f, v)H = 0 for all v ∈ H and hence, f = 0 almost
verywhere. Similarly, we can derive the same results for an operator T̃ ∈ L(Y ; Y ) corresponding to the
igenvalue problem on Y . Hence, by the spectral theorem we conclude

{h0
j}j∈N is an orthonormal basis in H and orthogonal in V0,

{yj}j∈N is an orthonormal basis in Y and orthogonal in X0.

dditionally, we deduce that ∪k∈NH0
k is dense in V0 and ∪k∈NYk is dense in X0.

We consider the Faedo–Galerkin approximations, α ∈ A, β ∈ {P, H},

ϕk
α(t) =

k∑
j=1

ξα,j(t)hj , µk
β(t) =

k∑
j=1

ζβ,j(t)hj , ϕk
v(t) = ϕv,∞(t) +

k∑
j=1

ξv,j(t)yj ,

pk(t) = p∞(t) +
k∑

j=1
ζp,j(t)h0

j , pk
v(t) = pv,∞(t) +

k∑
j=1

ζpv ,j(t)yj ,

(31)

here (ξα,j)α∈A : (0, T ) → R|A|, (ζβ,j)β∈{P,H} : (0, T ) → R2 and ξv,j , ζp,j , ζpv ,j : (0, T ) → R are coefficient
unctions for all j ∈ {1, . . . , k}. To simplify the notation, we set ϕk = (ϕk

α)α∈A, and

Sk
α = Sα(ϕk), mk

β = mβ(ϕk), Ψk = Ψ(ϕk
P , ϕk

H , ϕk
N ),

Jk
pv = Jpv(pk, pk

v), Jk
pv,Γ = Jpv(pk,ΠΓpk

v), Jk
σv = Jσv(ϕk

σ, pk, ϕk
v , pk

v),
Jk

σv,Γ = Jσv(ϕk
σ, pk,ΠΓϕk

v ,ΠΓpk
v),

where α ∈ A and β ∈ A\{N, ECM}. The Faedo–Galerkin system of the model then reads

(∂tϕ
k
P , φ1)H − (C(ϕk

P )vk, ∇φ1)H + (mk
P ∇µk

P , ∇φ1)H = (Sk
P , φ1)H ,

−(µk
P , φ2)H + (∂ϕk

P
Ψk, φ2)H + ε2

P (∇ϕk
P , ∇φ2)H = χc(ϕk

σ, φ2)H + χh(ϕk
ECM , φ2)H ,

(∂tϕ
k
H , φ3)H − (C(ϕk

H)vk, ∇φ3)H + (mk
H∇µk

H , ∇φ3)H = (Sk
H , φ3)H ,

−(µk
H , φ4)H + (∂ϕk

H
Ψk, φ4)H + ε2

H(∇ϕk
H , ∇φ4)H = χc(ϕk

σ, φ4)H + χh(ϕk
ECM , φ4)H ,

(∂tϕ
k
N , φ5)H = (Sk

N , φ5)H ,

(∂tϕ
k
σ, φ6)H − (C(ϕk

σ)vk, ∇φ6)H + Dσ(mk
σ∇ϕk

σ, ∇φ6)H = (Sk
σ , φ6)H + ⟨δΓ , Jk

σv,Γφ6⟩W

− χc(mk
σ∇(ϕk

P + ϕk
H), ∇φ6)H ,

(∂tϕ
k
MDE , φ7)H + DMDE(mk

MDE∇ϕk
MDE , ∇φ7)H = (Sk

MDE , φ7)H ,

(∂tϕ
k
TAF , φ8)H + DTAF (mk

TAF ∇ϕk
TAF , ∇φ8)H = (Sk

TAF , φ8)H ,

(∂tϕ
k
ECM , φ9)H = (Sk

ECM , φ9)H ,
k k k

(32)
K(∇p , ∇φ10)H = ⟨δΓ , Jpv,Γφ10⟩W + K(Sp , ∇φ10)H ,

16
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for all φi ∈ Hk, i ∈ {1, . . . , 9}, φ10 ∈ H0
k , and

(∂tϕ
k
v , φ11)Y + Dv(mk

v∇Λϕk
v , ∇Λφ11)Y = (C(ϕk

v)vk
v , ∇Λφ11)Y − R̃(Jk

σv, φ11)Y ,

K̃v(∇Λpk
v , ∇Λφ12)Y = −R̃(Jk

pv, φ12)Y ,
(33)

or all φj ∈ Yk, j ∈ {11, 12}, where we define the Faedo–Galerkin ansatz for the velocities vk, vk
v by

vk = −K(∇pk − Sk
p ),

vk
v = −K̃v∇Λpk

v .
(34)

e equip the system with the initial data,

ϕk
α(0) = ΠHk

ϕα,0, α ∈ A,

ϕk
v(0) = ϕv,∞(0) + ΠYk

ϕv,0,
(35)

here ΠHk
: H → Hk and ΠYk

: Y → Yk are the orthogonal projections onto the finite dimensional spaces,
hich can be written as

ΠHk
h =

k∑
j=1

(h, hj)Hhj , and ΠYk
y =

k∑
j=1

(y, yj)Y yj .

After inserting the Faedo–Galerkin ansatz functions (31) into the system (32)–(33), one can see that the
aedo–Galerkin system is equivalent to a system of nonlinear ordinary differential equations in the unknowns
(ξα,j)α∈A∪{v}, (ζβ,j)β∈CH∪{p,pv})1≤j≤k with the initial data,

ξα,j(0) = (ϕα,0, hj)H , α ∈ A,

ξv,j(0) = (ϕv,0, yj)Y .

ue to the continuity of the involved nonlinear functions the existence of solutions to (32)–(33) with
he initial data (35) follows from the standard theory of ordinary differential equations, according to the
auchy–Peano theorem [51]. We thus have local-in-time existence of a continuously differentiable solution,

(ϕk, µk
P , µk

H , pk − p∞, ϕk
v − ϕv,∞, pk

v − pv,∞) ∈ [C1([0, Tk]; Hk)]|A| × [C0([0, Tk]; Hk)]2 × C0([0, Tk]; H0
k)

× C1([0, Tk]; Yk) × C0([0, Tk]; Yk),

to the Faedo–Galerkin problem (32)–(33) on some sufficiently short time interval [0, Tk]. Further, we obtain
divSk

p ∈ H by the representation of Sk
p , see (A4), and therefore, vk ∈ H with divvk = −K(∆pk − divSk

p ) =
Jk

pv,Γ δΓ . Similarly, vk
v ∈ Y with divvk

v = −RJk
pv.

5.2. Energy estimates

Next, we extend the existence interval to [0, T ] by deriving Tk-independent estimates. In particular, these
estimates allow us to deduce that the solution sequences converge to some limit functions as k → ∞. It will
turn out that exactly these limit functions will form a weak solution to our 3D–1D model (14)–(16) in the
sense of Definition 1.

Step 1 (Testing)
We derive energy estimates of the model (32)–(33) by choosing suitable test functions in the variational

k k k k k
form. For the Cahn–Hilliard type equations, we choose φ1 = µP + χcϕσ + χhϕECM , φ2 = ∂tϕP − µP ,
17
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φ3 = µk
H + χcϕk

σ + χhϕk
ECM , φ4 = ∂tϕ

k
H − µk

H , φ5 = ΠHk
∂ϕk

N
Ψk − ε2

N∆ϕk
N , and we arrive at the system of

quations,

(∂tϕ
k
P , µk

P + χcϕk
σ + χhϕk

ECM )H +
⏐⏐⏐√mk

P ∇µk
P

⏐⏐⏐2
H

= (C(ϕk
P )vk, ∇µk

P + χc∇ϕk
σ + χh∇ϕk

ECM )H

− (mk
P ∇µk

P , χc∇ϕk
σ + χh∇ϕk

ECM )H

+ (Sk
P , µk

P + χcϕk
σ + χhϕk

ECM )H ,

(∂ϕk
P
Ψk, ∂tϕ

k
P )H + ε2

P

2
d
dt

|∇ϕk
P |2H + |µk

P |2H = (µk
P + χcϕk

σ + χhϕk
ECM , ∂tϕ

k
P )H + (∂ϕk

P
Ψk, µk

P )H

− (χcϕk
σ + χhϕk

ECM , µk
P )H + ε2

P (∇ϕk
P , ∇µk

P )H ,

(∂tϕ
k
H , µk

H + χcϕk
σ + χhϕk

ECM )H +
⏐⏐⏐√mk

H∇µk
H

⏐⏐⏐2
H

= (C(ϕk
H)vk, ∇µk

H + χc∇ϕk
σ + χ∇ϕk

ECM )H

− (mk
H∇µk

H , χc∇ϕk
σ + χh∇ϕk

ECM )H

+ (Sk
H , µk

H + χcϕk
σ + χhϕk

ECM )H ,

(∂ϕk
H
Ψk, ∂tϕ

k
H)H + ε2

H

2
d
dt

|∇ϕk
H |2H + |µk

H |2H = (µk
H + χcϕk

σ + χhϕk
ECM , ∂tϕ

k
H)H + (∂ϕk

H
Ψk, µk

H)H

− (χcϕk
σ + χhϕk

ECM , µk
H)H + ε2

H(∇ϕk
H , ∇µk

H)H ,

(∂tϕ
k
N ,ΠHk

∂ϕk
N
Ψk)H + ε2

N

2
d
dt

|∇ϕk
N |2H = (Sk

N ,ΠHk
∂ϕk

N
Ψk)H + ε2

N (∇Sk
N , ∇ϕk

N )H .

(36)
We exploit that the time derivative operator is invariant under the adjoint of the orthogonal projection.

Further, for the reaction–diffusion type equations, we choose φ6 = Cσϕk
σ, Cσ > 0 to be determined,

7 = ϕk
MDE , φ8 = ϕk

TAF , φ9 = ϕk
ECM − ∆ϕk

ECM , which yields the system,

Cσ

2
d
dt

|ϕk
σ|2H + CσDσ

⏐⏐⏐√mk
σ∇ϕk

σ

⏐⏐⏐2
H

= χcCσ(mk
σ∇(ϕk

P + ϕk
H), ∇ϕk

σ)H + Cσ(Sk
σ , ϕk

σ)H

+ Cσ(C(ϕk
σ)vk, ∇ϕk

σ)H + Cσ⟨δΓ , Jk
σv,Γϕk

σ⟩W ,

1
2

d
dt

|ϕk
MDE |2H + DMDE

⏐⏐⏐√mk
MDE∇ϕk

MDE

⏐⏐⏐2
H

= (Sk
MDE , ϕk

MDE)H ,

1
2

d
dt

|ϕk
TAF |2H + DTAF

⏐⏐⏐√mk
TAF ∇ϕk

TAF

⏐⏐⏐2
H

= (Sk
TAF , ϕk

TAF )H ,

1
2

d
dt

|ϕk
ECM |2H + 1

2
d
dt

|∇ϕk
ECM |2H = (Sk

ECM , ϕk
ECM )H + (∇Sk

ECM , ∇ϕk
ECM )H ,

(37)

and for the equations in Yk, we choose φ12 = Cv(ϕk
v − ϕv,∞), Cv > 0 to be determined, giving

Cv

2
d
dt

|ϕk
v − ϕv,∞|2Y + CvDv

⏐⏐⏐√mk
v∇Λϕk

v

⏐⏐⏐2Y = Cv(C(ϕk
v)vk

v , ∇Λϕk
v)Y −Cv(RJk

σv + ϕ′
v,∞, ϕk

v − ϕv,∞)Y , (38)

Similarly, we test Eqs. (34)2 by 1
K̃v

vk
v to obtain

1
K̃v

|vk
v |2H = −(∇Λ(pk

v − pv,∞), vk
v )Y = −R̃(Jk

pv, pk
v − pv,∞)Y . (39)

e test (34)1 by 1
K vk and simplify the first term on the right hand side by comparing it with Eq. (34)1 for

he velocity vk and the pressure equation (32), which is tested by φ10 = pk − p∞. This procedure yields

1
K

|vk|2H = −(∇(pk − p∞), vk)H + (∇p∞, vk)H + (Sk
p , vk)H

= K(∇pk − Sk
p , ∇(pk − p∞))H + (∇p∞, vk)H + (Sk

p , vk)H

= ⟨δΓ , Jk
pv,Γ (pk − p∞)⟩W − (∇p∞, vk)H + (Sk

p , vk)H .

(40)
18
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Step 2 (Estimates)
We separate this step into three sub-steps by deriving the energy estimates separately for (36)–(38).

Step 2.1 (Estimate for (36))
Adding the equations in (36) and (40) gives

d
dt

|Ψk|L1(Ω) + ε2
P

2
d
dt

|∇ϕk
P |2H + ε2

H

2
d
dt

|∇ϕk
H |2H + ε2

N

2
d
dt

|∇ϕk
N |2H +

⏐⏐⏐√mk
P ∇µk

P

⏐⏐⏐2
H

+
⏐⏐⏐√mk

H∇µk
H

⏐⏐⏐2
H

+ |µk
P |2H + |µk

H |2H + 1
K

|vk|2H
= (C(ϕk

P )vk, ∇µk
P + χc∇ϕk

σ + χh∇ϕk
ECM )H − (mk

P ∇µk
P , χc∇ϕk

σ + χh∇ϕk
ECM )H

+ (Sk
P , µk

P + χcϕk
σ + χhϕk

ECM )H + (∂ϕk
P
Ψk − χcϕk

σ − χhϕk
ECM , µk

P )H + ε2
P (∇ϕk

P , ∇µk
P )H

+ (C(ϕk
H)vk, ∇µk

H + χc∇ϕk
σ + χh∇ϕk

ECM )H − (mk
H∇µk

H , χc∇ϕk
σ + χh∇ϕk

ECM )H

+ (Sk
H , µk

H + χcϕk
σ + χhϕk

ECM )H + (∂ϕk
H
Ψk − χcϕk

σ − χhϕk
ECM , µk

H)H + ε2
H(∇ϕk

H , ∇µk
H)H

+ (Sk
N ,ΠHk

∂ϕk
N
Ψk)H + ε2

N (∇Sk
N , ∇ϕk

N )H + ⟨δΓ , Jk
pv,Γ (pk − p∞)⟩W − (∇p∞, vk)H + (Sk

p , vk)H

= RHSCH.

(41)

We note that the two convection terms cancel together with the last term (Sk
p , vk)H on the right hand side.

We apply the Hölder inequality on the terms on the right hand side, and use the assumptions (A4) and (A6),
which gives

RHSCH ≤ m∞|∇µk
P |H(χc|∇ϕk

σ|H + χh|∇ϕk
ECM |H) + |Sk

P |H(|µk
P |H + χc|ϕk

σ|H + χh|ϕk
ECM |H)

+ |µk
P |H(|∂ϕk

P
Ψk|

H
+ χc|ϕk

σ|H + χH |ϕk
ECM |H) + ε2

P |∇ϕk
P |H |∇µk

P |H
+ m∞|∇µk

H |H(χc|∇ϕk
σ|H + χh|∇ϕk

ECM |H) + |Sk
H |H(|µk

H |H + χc|ϕk
σ|H + χh|ϕk

ECM |H)
+ |µk

H |H(|∂ϕk
H
Ψk|

H
+ χc|ϕk

σ|H + χh|ϕk
ECM |H) + ε2

H |∇ϕk
H |H |∇µk

H |H
+ |Sk

N |H |ΠHk
∂ϕk

N
Ψk|H + ε2

N |∇Sk
N |H |∇ϕk

N |H + ⟨δΓ , Jk
pv,Γ (pk − p∞)⟩W + |∇p∞|H |vk|H .

(42)

We note that the norm of the orthogonal projection is bounded by 1. We use a similar argument as in (24)
and (25) to estimate the term involving the Dirac delta functional δΓ , i.e., with the assumption on the form
of Jk

pv,Γ , see (A5), we obtain

⟨δΓ , Jk
pv,Γ (pk − p∞)⟩W

≤ CΓ |pk − p∞|W |Jk
pv,Γ |

L2(Γ)

≤ CΓLp|pk − p∞|W (CΓ |pk − p∞|W + CΓ |p∞|W + |ΠΓ |L(Y ;L2(Γ))|p
k
v − pv,∞|Y + |ΠΓ |L(Y ;L2(Γ))|pv,∞|Y )

≤ C1Lp(|∇pk|2H + |∇Λpk
v |2Y + |p∞|2V + |pv,∞|2),

where we also applied the Poincaré inequality on pk − p∞ ∈ V0 and pk
v − pv,∞ ∈ X0 with the Poincaré

constants CP,Ω and CP,Λ, giving the constant

C1 = max{2C2
Γ (CV

W )2(C2
P,Ω + 1); |ΠΓ |2L(Y ;L2(Γ))C

2
P,Λ; |ΠΓ |2L(Y ;L2(Γ))|Λ|}.

Further, using the form on vk and vk
v gives

⟨δΓ , Jk
pv,Γ (pk − p∞)⟩W ≤ C1Lp(K−2|vk|2H + |Sk

p |2
H

+ K̃−2
v |vk

v |2Y + |p∞|2V + |pv,∞|2).

We apply Young’s inequality on the norm products to separate the terms. Here, the goal is to make
the terms involving |µk | , |µk | , |∇ϕk | small, since we cannot absorb them with the Grönwall–Bellman
P V H V σ H

19
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w
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lemma later on. We only track the important constants, which are used to absorb the terms on the right
hand side with the left hand side, the other ones we simply denote by the generic constant C. We have

RHSCH ≤ m0

4 |∇µk
P |2H + 2m2

∞χ2
c

m0
|∇ϕk

σ|2H + 2m2
∞χ2

h

m0
|∇ϕk

ECM |2H + 3|Sk
P |2H + 1

4
(

|µk
P |2H + χ2

c |ϕk
σ|2H

+ χ2
h|ϕk

ECM |2H
)

+1
4 |µk

P |2H + 3(|∂ϕk
P
Ψk|2H + χ2

c |ϕk
σ|2H + χ2

h|ϕk
ECM |2H) + ε4

P

m0
|∇ϕk

P |2H

+ m0

4 |∇µk
P |2H + m0

4 |∇µk
H |2H + 2m2

∞χ2
c

m0
|∇ϕk

σ|2H + 2m2
∞χ2

h

m0
|∇ϕk

ECM |2H + 3|Sk
H |2H

+ 1
4(|µk

H |2H + χ2
c |ϕk

σ|2H + χ2
h|ϕk

ECM |2H) + 1
4 |µk

H |2H + 3(|∂ϕk
H
Ψk|2H + χ2

c |ϕk
σ|2H + χ2

h|ϕk
ECM |2H)

+ ε4
H

m0
|∇ϕk

H |2H + m0

4 |∇µk
H |2H + 1

2 |Sk
N |2H + 1

2 |∂ϕk
N
Ψk|2H + ε|∇Sk

N |2H + ε4
N

4ε
|∇ϕk

N |2H

+ C1Lp

(
K−2|vk|2H + |Sk

p |2
H

+ K̃−2
v |vk

v |2Y + |p∞|2V + |pv,∞|2
)

+ K

2 |∇p∞|2H + 1
2K

|vk|2H ,

(43)
here ε > 0 is a constant, which will be determined later on, see (52) for more details. We estimate the

erms involving the potential Ψ via assumption (A7) and afterwards, we collect the terms with the same
orms, which yields

RHSCH ≤ m0

2
(
|∇µk

P |2H + |∇µk
H |2H

)
+ 1

2
(
|µk

P |2H + |µk
H |2H

)
+ 4m2

∞χ2
c

m0
|∇ϕk

σ|2H + ε|∇Sk
N |2H

+ 1
2K

|vk|2H + C1Lp

(
K−2|vk|2H + |Sk

p |2
H

+ K̃−2
v |vk

v |2Y + |p∞|2V + |pv,∞|2
)

+ C
(
|ϕk

σ|2H + |ϕP |2V + |ϕH |2V + |ϕN |2V + |ϕk
ECM |2V + |p∞|2V + |Sk

P |2H + |Sk
H |2H + |Sk

N |2H
)
.

(44)

We insert this estimate into (41), and absorb the terms involving the chemical potentials, and arrive at the
upper bound

d
dt

[
|Ψk|L1(Ω) + ε2

P

2 |∇ϕk
P |2H + ε2

H

2 |∇ϕk
H |2H + ε2

N

2 |∇ϕk
N |2H

]
+ m0

2 |∇µk
P |2H + m0

2 |∇µk
H |2H + 1

2 |µk
P |2H

+ 1
2 |µk

H |2H +
(

1
2K

− C1Lp

K2

)
|vk|2H

≤ 4m2
∞χ2

c

m0
|∇ϕk

σ|H + ε|∇Sk
N |2H + C1Lp

(
|Sk

p |2
H

+ K̃−2
v |vk

v |2Y
)

+ C
(

|ϕk
σ|2H + |ϕk

P |2V + |ϕk
H |2V

+ |ϕk
N |2V + |ϕk

ECM |2V + |ϕk
v |2Y + |p∞|2V + |pv,∞|2 + |Sk

P |2H + |Sk
H |2H + |Sk

N |2H
)

.

(45)

Step 2.2 (Estimate for (37))
Adding the equations in (37) gives

Cσ

2
d
dt

|ϕk
σ|2H + CσDσ

⏐⏐⏐√mk
σ∇ϕk

σ

⏐⏐⏐2
H

+ 1
2

d
dt

|ϕk
MDE |2H + DMDE

⏐⏐⏐√mk
MDE∇ϕk

MDE

⏐⏐⏐2
H

+ 1
2

d
dt

|ϕk
TAF |2H

+ DTAF

⏐⏐⏐√mk
TAF ∇ϕk

TAF

⏐⏐⏐2
H

+ 1
2

d
dt

|ϕk
ECM |2H + 1

2
d
dt

|∇ϕk
ECM |2H

= χcCσ(mk
σ∇(ϕk

P + ϕk
H), ∇ϕk

σ)H + Cσ(Sk
σ , ϕk

σ)H + Cσ(C(ϕk
σ)vk, ∇ϕk

σ)H + Cσ⟨δΓ , Jk
σv,Γϕk

σ⟩W

+ (Sk
MDE , ϕk

MDE)H + (Sk
TAF , ϕk

TAF )H + (Sk
ECM , ϕk

ECM )H + (∇Sk
ECM , ∇ϕk

ECM )H

(46)
= RHSRD.
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w
(
w

We estimate the term involving the Dirac delta functional as before, i.e., we use assumption (A5) and the
inequalities (24) and (25) to obtain

Cσ⟨δΓ , Jk
σv,Γϕk

σ⟩W

≤ CσCΓ |ϕk
σ|W

(
f∞Lp(CΓ |pk|W + |ΠΓ |L(Y ;L2(Γ))|p

k
v |Y ) + Lσ(CΓ |ϕk

σ|W + |ΠΓ |L(Y ;L2(Γ))|ϕ
k
v |Y )

)
≤ C2Cσ max{Lp; Lσ}

(
|ϕk

σ|2V + |ϕk
v |2Y + K−2|vk|2H + |Sk

p |2
H

+ K̃−2
v |vk

v |2Y + |p∞|2V + |pv,∞|2
)
,

where

C2 = max{24C2
Γ (CV

W )2; f2
∞C2

Γ (CV
W )2(C2

P,Ω + 1); f2
∞|ΠΓ |2L(Y ;L2(Γ))C

2
P,Λ; f2

∞|ΠΓ |2L(Y ;L2(Γ))|Λ|;

|ΠΓ |2L(Y ;L2(Γ))}.

In a similar way to the estimates before, we apply Hölder’s and Young’s inequalities on the terms on the
right hand side, which results in

RHSRD ≤ Cσm2
∞χ2

c

Dσm0
|∇(ϕk

P + ϕk
H)|2H + CσDσm0

4 |∇ϕk
σ|2H + C(|Sk

σ |2H + |ϕk
σ|2H)

+ CσDσm0

4 |∇ϕk
σ|2H + Cσ

Dσm0
|vk|2H + C2Cσ max{Lp; Lσ}

(
|ϕk

σ|2V + |ϕk
v |2Y + K−2|vk|2H

+ |Sk
p |2

H
+ K̃−2

v |vk
v |2Y + |p∞|2V + |pv,∞|2

)
+C

(
|Sk

MDE |2H + |ϕk
MDE |2H + |Sk

TAF |2H

+ |ϕk
TAF |2H + |Sk

ECM |2H + |ϕk
ECM |2H

)
+ε|∇Sk

ECM |2H + 1
4ε

|∇ϕk
ECM |2H ,

(47)

here we used the same constant ε as before in (41) and applied the assumption on the form of Jk
σv,Γ , see

A5). Again, collecting the terms on the right hand side and absorbing the terms with their counterparts,
e have

1
2

d
dt

[
Cσ|ϕk

σ|2H + |ϕk
MDE |2H + |ϕk

TAF |2H + |ϕk
ECM |2H + |∇ϕk

ECM |2H

]
+ DMDEm0|∇ϕk

MDE |2H

+ DTAF m0|∇ϕk
TAF |2H + Cσ

2
(
Dσm0 − 2C2 max{Lp; Lσ}

)
|∇ϕk

σ|2H

≤
(

Cσ

Dσm0
+ C2Cσ max{Lp; Lσ}

K2

)
|vk|2H + C2Cσ max{Lp; Lσ}

(
|Sk

p |2
H

+ K̃−2
v |vk

v |2Y
)

+ ε|∇Sk
ECM |2H

+ C
(

|ϕP |2V + |ϕH |2V + |ϕk
σ|2H + |ϕk

MDE |2H + |ϕk
TAF |2H + |ϕk

ECM |2V + |ϕk
v |2Y + |p∞|2V

+ |pv,∞|2 + |Sk
σ |2H + |Sk

MDE |2H + |Sk
TAF |2H + |Sk

ECM |2H
)

.

(48)

Step 2.3 (Estimate for (38))
Lastly, adding the equations in (38) and (39) gives

Cv

2
d
dt

|ϕk
v − ϕv,∞|2Y + CvDv

⏐⏐⏐√mk
v∇Λϕk

v

⏐⏐⏐2
Y

+ 1
K̃v

|vk
v |2Y

= Cv(C(ϕk
v)vk

v , ∇Λϕk
v)Y − Cv(RJk

σv + ϕ′
v,∞, ϕk

v − ϕv,∞)Y − R̃(Jk
pv, pk

v − pv,∞)Y .

(49)

We estimate the last term on the right hand side with the Poincaré–Wirtinger inequality (18) with constant
CP , the Darcy law (34) and the Young inequality as follows

−R̃(Jk
pv, pk

v − pv,∞)Y ≤ R̃CP |Jk
pv|

Y
|∇pk

v |Y = R2C2
P |Jk

pv|
Y

|vk
v |Y ≤ R2C2

P |Jk
pv|2

Y
+ 1 |vk

v |2Y .

K̃v K̃v 4K̃v

21



M. Fritz, P.K. Jha, T. Köppl et al. Nonlinear Analysis: Real World Applications 61 (2021) 103331

(

Additionally, repeating the steps from before and using the assumption on the forms on Jk

pv and Jk
σv, see

A5), we arrive at

Cv

2
d
dt

|ϕk
v − ϕv,∞|2Y + CvDvm0|∇Λϕk

v |2Y + 1
K̃v

|vk
v |2Y

≤ Cv

Dvm0
|vk

v |2Y + CvDvm0

4 |∇Λϕk
v |2Y + R2|Jk

σv|2Y + C
(
|ϕ′

v,∞|2 + |ϕk
v − ϕv,∞|2Y

)
+ R2C2

P

K̃v

|Jk
pv|2

Y
+ 1

4K̃v

|vk
v |2Y

≤ Cv

Dvm0
|vk

v |2Y + CvDvm0

4 |∇Λϕk
v |2Y + C

(
|ϕ′

v,∞|2 + |ϕk
v − ϕv,∞|2Y

)
+ 1

4K̃v

|vk
v |2Y + (1 + C2

P K̃−1
v )·

R2C2 max{Lp; Lσ}
(

|ϕk
σ|2V + |ϕk

v |2Y + K−2|vk|2H + |Sk
p |2

H
+ K̃−2

v |vk
v |2Y + |p∞|2V + |pv,∞|2

)
,

which gives after choosing Cv > 4K̃v
Dvm0

and absorbing

Cv

2
d
dt

|ϕk
v − ϕv,∞|2Y + 3CvDvm0

4 |∇Λϕk
v |2Y +

(
1

2K̃v

− (1 + C2
P K̃−1

v )R2C2 max{Lp; Lσ}
K̃2

v

)
|vk

v |2Y

≤ (1 + C2
P K̃−1

v )R2C2 max{Lp; Lσ}
(

|ϕk
σ|2V + |ϕk

v − ϕv,∞|2Y + |ϕv,∞|2 + K−2|vk|2H + |Sk
p |2

H

+ |p∞|2V + |pv,∞|2
)

+C
(
|ϕ′

v,∞|2 + |ϕk
v − ϕv,∞|2Y

)
.

(50)

Step 3 (Adding)
We add Eqs. (45), (48) and (50) to arrive at

1
2

d
dt

[
2|Ψk|L1(Ω) + ε2

P |∇ϕk
P |2H + ε2

H |∇ϕk
H |2H + ε2

N |∇ϕk
N |2H + Cσ|ϕk

σ|2H + |ϕk
MDE |2H + |ϕk

TAF |2H

+ |ϕk
ECM |2V + Cv|ϕk

v − ϕv,∞|2Y

]
+m0

2 |∇µk
P |2H + m0

2 |∇µk
H |2H + 1

2 |µk
P |2H + 1

2 |µk
H |2H

+
(

1
2K

− C1Lp

K2 − Cσ

Dσm0
− (Cσ + R2 + R2C2

P K̃−1
v )C2 max{Lp; Lσ}

K2

)
|vk|2H

+
(

CσDσm0

2 − 4m2
∞χ2

c

m0
− (Cσ + K̃v + 1)C2 max{Lp; Lσ}

)
|∇ϕk

σ|2H

+ DMDEm0|∇ϕk
MDE |2H + DTAF m0|∇ϕk

TAF |2H + 3CvDvm0

4 |∇Λϕk
v |2Y

+
(

1
2K̃v

− C1Lp

K̃2
v

− (Cσ + R2 + R2C2
P K̃−1

v )C2 max{Lp; Lσ}
K̃2

v

)
|vk

v |2Y

≤ ε
(
|∇Sk

N |2H + |∇Sk
ECM |2H

)
+ (C1 + (Cσ + R2 + R2C2

P K̃−1
v )C2) max{Lp; Lσ}|Sk

p |2
H

+ C
(

1 + |ϕP |2V
+ |ϕk

H |2V + |ϕk
N |2V + |ϕk

v |2Y + |ϕk
σ|2H + |ϕk

MDE |2H + |ϕk
TAF |2H + |ϕk

ECM |2V + |ϕv − ϕv,∞|2Y + |p∞|2V + |pv,∞|2

+ |ϕv,∞|2 + |ϕ′
v,∞|2 + |Sk

P |2H + |Sk
H |2H + |Sk

N |2H + |Sk
σ |2H + |Sk

MDE |2H + |Sk
TAF |2H + |Sk

ECM |2H
)

.

(51)
By assumption (A4) on the source functions, we have the three estimates

•
∑

α∈A |Sk
α|2H ≲

∑
α∈A |ϕα|2H ,

• |∇Sk
N |2H + |∇Sk

ECM |2H ≤ 2|A|f2
∞|A|2

∑
α∈A |∇ϕα|2H ,

• |Sk
p |2

H
≤ 8
(
|∇µk

P |2H + |∇µk
H |2H + 2χ2

c |∇ϕk
σ|2H + 2χ2

h|∇ϕk
ECM |2H

)
,

and insert these estimates into (51). Further, in order to treat the factor |∇Sk
N |2H + |∇Sk

ECM |2H , we choose
the constant

ε = m0
|A|+2 2 2 min{CσDσ, DMDE , DTAF }, (52)
2 f∞|A|
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a
p

S

t
w

so that we can conclude

ε
(
|∇Sk

N |2H + |∇Sk
ECM |2H

)
≤ m0

4 min{CσDσ, DMDE , DTAF }
∑
α∈A

|∇ϕα|2H

≤ CσDσm0

4 |∇ϕk
σ|2H + DMDEm0

4 |∇ϕk
MDE |2H + DTAF m0

4 |∇ϕk
TAF |2H

+ C(|ϕk
P |2V + |ϕk

H |2 + |ϕk
N |2 + |ϕk

ECM |2V ).

We absorb, collect and summarize the constants, giving

1
2

d
dt

[
2|Ψk|L1(Ω) + ε2

P |∇ϕk
P |2H + ε2

H |∇ϕk
H |2H + ε2

N |∇ϕk
N |2H + Cσ|ϕk

σ|2H + |ϕk
MDE |2H + |ϕk

TAF |2H

+ |ϕk
ECM |2V + |ϕk

v − ϕv,∞|2Y

]
+1

2 |µk
P |2H + 1

2 |µk
H |2H

+
(m0

2 − 8(C1 + (Cσ + R2 + R2C2
P K̃−1

v )C2) max{Lp; Lσ}
) (

|∇µk
P |2H + |∇µk

H |2H
)

+
(

1
2K

− C1Lp

K2 − Cσ

Dσm0
− (Cσ + R2 + R2C2

P K̃−1
v )C2 max{Lp; Lσ}

K2

)
|vk|2H

+
(

CσDσm0

2 − 4m2
∞χ2

c

m0
− (Cσ + R2 + R2C2

P K̃−1
v )C2 max{Lp; Lσ}

)
|∇ϕk

σ|2H

+ 3m0

4
(
DMDE |∇ϕk

MDE |2H + DTAF |∇ϕk
TAF |2H + Dv|∇Λϕk

v |2Y
)

+
(

1
2K̃v

− C1Lp

K̃2
v

− (Cσ + R2 + R2C2
P K̃−1

v )C2 max{Lp; Lσ}
K̃2

v

)
|vk

v |2Y

≤ C
(

1 + |ϕk
P |2V + |ϕk

H |2V + |ϕk
N |2V + |ϕk

v |2Y + |ϕk
σ|2H + |ϕk

MDE |2H + |ϕk
TAF |2H + |ϕk

ECM |2V + |ϕk
v − ϕv,∞|2Y

+ |p∞|2V + |pv,∞|2 + |ϕv,∞|2 + |ϕ′
v,∞|2

)
,

(53)
nd we choose Cσ and Lp, Lσ, K such that the prefactors are positive, see also assumption (A5). In
articular, we have to ensure the condition

8m2
∞χ2

c

m2
0Dσ

< Cσ <
Dσm0

2K
.

tep 4 (Grönwall–Bellman lemma)
First, we eliminate the prefactors on the left hand side of the energy inequality (53) by estimating it with

he minimum of all prefactors and bringing it to the right hand side to the generic constant C. Afterwards,
e integrate the inequality over the time interval (0, t) with t ∈ (0, Tk), apply the growth assumption (A7),

and obtain

|Ψk(t)|L1(Ω) + |ϕk
P (t)|2V + |ϕk

H(t)|2V + |ϕk
N (t)|2V + |ϕk

σ(t)|2H + |ϕk
MDE(t)|2H + |ϕk

TAF (t)|2H + |ϕk
ECM (t)|2V

+ |ϕk
v(t) − ϕv,∞|2Y + ∥ϕk

σ∥2
L2(0,Tk;V ) + ∥µk

P ∥2
L2(0,Tk;V ) + ∥µk

H∥2
L2(0,Tk;V ) + ∥ϕk

MDE∥2
L2(0,Tk;V )

+ ∥ϕk
TAF ∥2

L2(0,Tk;V ) + ∥ϕk
v − ϕv,∞∥2

L2(0,Tk;X0) + ∥vk∥2
L2(0,Tk;H) + ∥vk

v ∥2
L2(0,Tk;Y )

− C
(

∥ϕk
P ∥2

L2(0,Tk;V ) + ∥ϕk
H∥2

L2(0,Tk;V ) + ∥ϕk
N ∥2

L2(0,Tk;V ) + ∥ϕk
v∥2

L2(0,Tk;Y ) + ∥ϕk
σ∥2

L2(0,Tk;H)

+ ∥ϕk
MDE∥2

L2(0,Tk;H) + ∥ϕk
TAF ∥2

L2(0,Tk;H) + ∥ϕk
ECM ∥2

L2(0,Tk;V ) + ∥ϕk
v − ϕv,∞∥2

L2(0,Tk;Y )
)

≤ C(Tk) ·
(
1 + |Ψk(0)|L1(Ω) + |∇ϕk

P,0|2
H

+ |∇ϕk
H,0|2

H
+ |∇ϕk

N,0|2
H

+ |ϕk
σ,0|2

H
+ |ϕk

MDE,0|2
H

+ |ϕk
TAF ,0|2

H

+ |ϕk |2 + |ϕk |2 + ∥p ∥2 + |p |2 + |ϕ |2
)

.
ECM,0 V v,0 Y ∞ L2(0,T ;V ) v,∞ L2(0,T ) v,∞ H1(0,T )
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Tk;V )
By applying the Grönwall–Bellman lemma, see Lemma 1, we obtain

∥Ψk∥L∞(0,Tk;L1(Ω)) +
∑

α∈CH∪{ECM}

∥ϕk
α∥2

L∞(0,Tk;V ) +
∑

α∈{P,H}

∥µk
α∥2

L2(0,Tk;V ) +
∑

β∈RD

∥ϕk
β∥2

L∞(0,Tk;H)∩L2(0,

+ ∥vk∥2
L2(0,Tk;H) + ∥ϕk

v − ϕv,∞∥2
L∞(0,Tk;Y )∩L2(0,Tk;X0) + ∥vk

v ∥2
L2(0,Tk;Y )

≤ C(Tk) ·
(

1 + |ϕk
v,0|2

Y
+

∑
α∈CH∪{ECM}

|ϕk
α,0|2

V
+
∑

β∈RD

|ϕk
β,0|2

H
+ |Ψ(ϕk

P,0, ϕk
H,0, ϕk

N,0)|
L1(Ω)

+ ∥p∞∥2
L2(0,T ;V ) + |pv,∞|2L2(0,T ) + |ϕv,∞|2H1(0,T )

)
.

(54)

We have chosen the initial values of the Faedo–Galerkin approximations as the orthogonal projections of

the initial values of their counterpart, see (35). The operator norm of an orthogonal projection is bounded

by 1 and, therefore, uniform estimates are obtained in (54); for example

|ϕk
P,0|2

V
= |ΠHk

ϕP,0|2
V

≤ |ϕP,0|2V .

Using the upper bound (26) of Ψ , we treat the term involving the potential function on the right hand side

in the following way:

|Ψ(ϕk
P,0, ϕk

H,0, ϕk
N,0)|

L1(Ω) ≲ 1 + |ϕk
P,0|2

H
+ |ϕk

H,0|2
H

+ |ϕk
N,0|2

H

= 1 + |ΠHk
ϕP,0|2

H
| + |ΠHk

ϕH,0|2H + |ΠHk
ϕN,0|2H

≤ 1 + |ϕP,0|2H + |ϕH,0|2H + |ϕN,0|2H .

Now, the k-independent right hand side in the estimate allows us to extend the time interval by setting

Tk = T for all k ∈ N. Therefore, we have the final uniform energy estimate,

∥Ψk∥L∞(0,T ;L1(Ω)) +
∑

α∈CH∪{ECM}

∥ϕk
α∥2

L∞(0,T ;V ) +
∑

α∈{P,H}

∥µk
α∥2

L2(0,T ;V ) +
∑

β∈RD

∥ϕk
β∥2

L∞H∩L2(0,T ;V )

+ ∥vk∥2
L2(0,T ;H) + ∥ϕk

v − ϕv,∞∥2
L∞(0,T ;Y )∩L2(0,T ;X0) + ∥vk

v ∥2
L2(0,T ;Y )

≤ C(T ) ·
(

1 + |ϕv,0|2Y +
∑

α∈CH∪{ECM}

|ϕα,0|2V +
∑

β∈RD

|ϕβ,0|2H

+ ∥p∞∥2
L2(0,T ;V ) + |pv,∞|2L2(0,T ) + |ϕv,∞|2H1(0,T )

)
.

(55)

From this energy inequality and (34) we also get bounds for the pressures pk and pk
v in the following way

∥pk − p∞∥L2(0,T ;V0) + ∥pk
v − pv,∞∥L2(0,T ;X0) ≤ C.
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5.3. Limit process

Weak convergence
Next, we prove that there are subsequences of ϕk, µk

P , µk
H , pk, ϕk

v , pk
v , which converge to a weak solution

of our model (14)–(16) in the sense of Definition 1. From the energy estimate (55) we deduce that

{ϕk
α}k∈N is bounded in L∞(0, T ; V ), α ∈ CH ∪ {ECM},

{µk
α}k∈N is bounded in L2(0, T ; V ), α ∈ {P, H},

{ϕk
β}k∈N is bounded in L∞(0, T ; H) ∩ L2(0, T ; V ), β ∈ RD,

{vk}k∈N is bounded in L2(0, T ; L2(Ω ;R3)),
{pk}k∈N is bounded in (p∞ + L2(0, T ; V0)),
{ϕk

v}k∈N is bounded in L∞(0, T ; Y ) ∩ (ϕv,∞ + L2(0, T ; X0)),
{vk

v }k∈N is bounded in L2(0, T ; Y ),
{pk

v}k∈N is bounded in (pv,∞ + L2(0, T ; X0)),

(56)

and, by the Banach–Alaoglu theorem, these bounded sequences have weakly/weakly-∗ convergent subse-
quences. By a standard abuse of notation, we drop the subsequence index. Consequently, there are functions
ϕ : (0, T ) × Ω → R|A|, µP , µH , p : (0, T ) × Ω → R, v : (0, T ) × Ω → R3, ϕv, vv, pv : (0, T ) × Λ → R such
that, for k → ∞,

ϕk
α ⇀ ϕα weakly-∗ in L∞(0, T ; V ), α ∈ CH ∪ {ECM},

µk
α ⇀ µα weakly in L2(0, T ; V ), α ∈ CH\{N},

ϕk
β ⇀ ϕβ weakly-∗ in L∞(0, T ; H) ∩ L2(0, T ; V ), β ∈ RD,

vk ⇀ v weakly in L2(0, T ; L2(Ω ;R3)),
pk ⇀ p weakly in (p∞ + L2(0, T ; V0)),
ϕk

v ⇀ ϕv weakly-∗ in L∞(0, T ; Y ) ∩ (ϕv,∞ + L2(0, T ; X0)),
vk

v ⇀ vv weakly in L2(0, T ; Y ),
pk

v ⇀ pv weakly in (pv,∞ + L2(0, T ; X0)).

(57)

Strong convergence
We now consider taking the limit k → ∞ in the Faedo–Galerkin system (32)–(33) in the hope to attain

the initial variational system (28)–(29). Since the equations in (32)–(33) are nonlinear in ϕk and ϕk
v , we

want to achieve strong convergence of these sequences before we take the limit in (32)–(33). Therefore, our
goal is to bound their time derivatives and to apply the Aubin–Lions–Simon compactness lemma (19).

Let (φ, φ̂, φ̃) be such that φ ∈ L2(0, T ; V ), φ̂ ∈ L2(0, T ; H), φ̃ ∈ L2(0, T ; X0), and

ΠHk
φ =

k∑
j=1

φk
j hj , ΠHk

φ̂ =
k∑

j=1
φ̂k

j hj , ΠYk
φ̃ =

k∑
j=1

φ̃k
j yj ,

with time-dependent coefficient functions φk
j , φ̂k

j , φ̃k
j : (0, T ) → R, j ∈ {1, . . . , k}. We multiply Eqs. (32) and

k
(33) by φ̃j by the appropriate coefficient functions, sum up each equation from j = 1 to k and integrate in
25
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time over (0, T ), to obtain the equation system,∫ T

0
⟨∂tϕ

k
α, φ⟩V dt =

∫ T

0
(C(ϕk

α)vk, ∇ΠHk
φ)H − (mk

α∇µk
α, ∇ΠHk

φ)H + (Sk
α,ΠHk

φ)H dt,∫ T

0
⟨∂tϕ

k
β , φ̂⟩V dt =

∫ T

0
(Sk

β ,ΠHk
φ̂)H dt,∫ T

0
⟨∂tϕ

k
σ, φ⟩V dt =

∫ T

0
(C(ϕk

σ)vk, ∇ΠHk
φ)H − Dσ(mk

σ∇ϕk
σ, ∇ΠHk

φ)H + (Sk
σ ,ΠHk

φ)H

+ ⟨δΓ , Jk
σv,ΓΠHk

φ⟩W − χc(mk
σ∇(ϕk

P + ϕk
H + ϕk

N ), ∇ΠHk
φ)H dt,∫ T

0
⟨∂tϕ

k
γ , φ⟩V dt =

∫ T

0
−Dγ(mk

γ∇ϕk
γ , ∇ΠHk

φ)H + (Sk
γ ,ΠHk

φ)H dt,∫ T

0
⟨∂tϕ

k
v , φ̃⟩X dt =

∫ T

0
(C(ϕk

v)vk
v , ∇ΛΠYk

φ̃)Y − Dv(mk
v∇Λϕk

v , ∇ΛΠYk
φ̃)Y − R̃(Jk

σv,ΠYk
φ̃)Y dt,

(58)

where α ∈ {P, H}, β ∈ {N, ECM}, γ ∈ {MDE, TAF}. Each equation in (58) can be treated using standard
inequalities and the estimate involving the trace operator, see (24), the boundedness of the orthogonal
projection and the energy estimate (55), e.g., we find∫ T

0
⟨∂tϕ

k
σ, φ⟩V dt ≲

∫ T

0
|vk|H |φ|V + |ϕk

σ|V |φ|V +
∑
α∈A

|ϕk
α|H |φ|H + |Jk

σv,Γ |
L2(Γ)|φ|V +

∑
β∈CH

|ϕk
β |

V
|φ|V dt

≲ ∥φ∥L2(0,T ;V ).

From this inequality and the bounds derived earlier, see (56), we conclude that

{ϕk
α}k∈N is bounded in H1(0, T ; V ′) ∩ L∞(0, T ; V ), α ∈ {P, H},

{ϕk
β}k∈N is bounded in H1(0, T ; H) ∩ L∞(0, T ; V ), β ∈ {N, ECM},

{ϕk
γ}k∈N is bounded in H1(0, T ; V ′) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ), γ ∈ RD,

{ϕk
v}k∈N is bounded in H1(0, T ; X ′

0) ∩ L∞(0, T ; Y ) ∩ (ϕv,∞ + L2(0, T ; X0)).

We apply the Aubin–Lions–Simon compactness lemma (19), yielding the strong convergences as k → ∞

ϕk
α −→ ϕα strongly in C0([0, T ]; H), α ∈ CH ∪ {ECM},

ϕk
β −→ ϕβ strongly in L2(0, T ; H) ∩ C0([0, T ]; V ′), β ∈ RD,

ϕk
v −→ ϕv strongly in L2(0, T ; Y ) ∩ C0([0, T ]; X ′

0).
(59)

The strong convergence ϕk
α → ϕα in C0([0, T ]; H) implies ϕα(0) = ϕα,0 in H and similarly ϕβ(0) = ϕβ,0

in V ′ and ϕv(0) = ϕv,0 in X ′
0. Therefore, the limit functions (ϕ, ϕv) of the Faedo–Galerkin approximations

fulfill the initial conditions for the system (14)–(17).

Limit process
We show that the limit functions also satisfy the variational form (28)–(29), as defined in Definition 1.

Multiplying the Faedo–Galerkin system (32)–(33) by η ∈ C∞
c (0, T ) and integrating from 0 to T , gives∫ T

0
⟨∂tϕ

k
α, hj⟩V η(t) dt =

∫ T

0

(
(C(ϕk

α)vk, ∇hj)H − (mk
α∇µk

α, ∇hj)H + (Sk
α, hj)H

)
η(t) dt,∫ T

0
(µk

α, hj)Hη(t) dt =
∫ T

0

(
(∂ϕαΨ

k − χcϕk
σ − χhϕk

ECM , hj)H + ε2
α(∇ϕk

α, ∇hj)H

)
η(t) dt,∫ T

(∂tϕ
k
β , hj)Hη(t) dt =

∫ T

(Sk
β , hj)Hη(t) dt,

(60)
0 0
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a

f
e
w

i

T

and ∫ T

0
⟨∂tϕ

k
σ, hj⟩V dt =

∫ T

0

(
(C(ϕk

σ)vk, ∇hj)H − Dσ(mk
σ∇ϕk

σ, ∇hj)H + (Sk
σ , hj)H

+ ⟨δΓ , Jk
σv,Γhj⟩W − χc(mk

σ∇(ϕk
P + ϕk

H + ϕk
N ), ∇hj)H

)
η(t) dt,∫ T

0
⟨∂tϕ

k
γ , hj⟩V η(t) dt =

∫ T

0

(
−Dγ(mk

γ∇ϕk
γ , ∇hj)H + (Sk

γ , hj)H

)
η(t) dt,∫ T

0
(vk, hj)Hη(t) dt =

∫ T

0

(
−K(∇p, hj)H + (Sp, ∇hj)H

)
η(t) dt,∫ T

0
K(∇pk, ∇hj)Hη(t) dt =

∫ T

0

(
⟨δΓ , Jk

pv,Γhj⟩W + (Sp, ∇hj)H

)
η(t) dt,

(61)

nd ∫ T

0
⟨∂tϕ

k
v , yj⟩Xη(t) dt =

∫ T

0

(
(C(ϕk

v)vk
v , ∇yj)Y − Dv(mk

v∇Λϕk
v , ∇Λyj)Y − R̃(Jk

σv, yj)Y

)
η(t) dt,∫ T

0
(vk

v , yj)Y η(t) dt =
∫ T

0
−K̃v(∇Λpk

v , yj)Y η(t) dt,∫ T

0
K̃v(∇Λpk

v , ∇Λyj)Y η(t) dt =
∫ T

0
−R̃(Jk

pv, yj)Y η(t) dt,

(62)

or each j ∈ {1, . . . , k}, α ∈ {P, H}, β ∈ {N, ECM}, γ ∈ {MDE, TAF}. We take the limit k → ∞ in each
quation. The linear terms can be treated directly in the limit process since they can be justified via the
eak convergences (57), e.g., the functional

µk
P ↦→

∫ T

0
(µk

P , hj)Hη(t) dt ≤ ∥µk
P ∥L2(0,T ;H)|hj |H |η|L2(0,T ),

s linear and continuous on L2(0, T ; H) and hence, as k → ∞,∫ T

0
(µk

P , hj)Hη(t) dt −→
∫ T

0
(µP , hj)η(t) dt.

hus, it remains to examine the nonlinear terms. We do so in the steps (i)–(v) as follows.

(i) We have derived the convergence, see (59),

ϕk
α −→ ϕα in L2(0, T ; H) ∼= L2((0, T ) × Ω), α ∈ A,

for k → ∞ and, consequently, we have by the continuity and boundedness of mα,

mk
α = mα

(
ϕk(t, x)

)
−→ mα

(
ϕ(t, x)

)
=: mα a.e. in (0, T ) × Ω for k → ∞.

Applying the Lebesgue dominated convergence theorem, gives for k → ∞

mk
α∇hjη −→ mα∇hjη in L2((0, T ) × Ω ;Rd),

and, together with ∇µk
α ⇀ ∇µα weakly in L2((0, T ) × Ω ;Rd) as k → ∞, we have for k → ∞

mα(ϕk)η∇hj · ∇µk
α −→ mα(ϕ)η∇hj · ∇µα in L1((0, T ) × Ω).

We use here the fact that the product of a strongly and a weakly converging sequence in L2 converges
1
strongly in L .
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(ii) By (59), we have ϕk
α → ϕα in L2((0, T ) × Ω) and vk ⇀ v in L2((0, T ) × Ω ;Rd) as k → ∞, hence for

k → ∞
C(ϕk

α)vk · ∇hjη −→ C(ϕα)v · ∇hjη in L1((0, T ) × Ω).

(iii) By the continuity and the growth assumptions on ∂ϕαΨ , we have for k → ∞

∂ϕαΨ
(
ϕk

P (t, x), ϕk
H(t, x), ϕk

N (t, x)
)

−→ ∂ϕαΨ
(
ϕP (t, x), ϕH(t, x), ϕN (t, x)

)
a.e. in (0, T ) × Ω ,

|∂ϕαΨ(ϕk
P , ϕk

H , ϕk
N )ηhj | ≤ C(1 + |ϕk

P | + |ϕk
H | + |ϕk

N |)|ηhj |,

and the Lebesgue dominated convergence theorem yields for k → ∞

∂ϕαΨ(ϕk
P , ϕk

H , ϕk
N )ηhj −→ ∂ϕαΨ(ϕP , ϕH , ϕN )ηhj in L1((0, T ) × Ω).

(iv) We have the strong convergence of ϕk
P and ϕk

H in L2((0, T )×Ω) and the continuity and boundedness of
C. Together with the weak convergence of ∇ϕk

σ and ∇µk in L2((0, T ) ×Ω ;Rd) it is enough to conclude
the convergence of the term involving

Sk
p = −C(ϕk

P )(∇µk
P + χc∇ϕk

σ) − C(ϕk
H)(∇µk

H + χc∇ϕk
σ).

(v) We have ϕk
v → ϕv in L2((0, T ) × Λ) and ϕk

σ → ϕσ in L2((0, T ) × Ω) as k → ∞ and therefore, also
ΠΓϕk

v → ΠΓϕv in L2((0, T ) × Γ ). Since fσ,v is a continuous and bounded function, we conclude∫ T

0

∫
Γ

|fσ,v(ϕk
v ,ΠΓϕk

σ)trΓhjη(t)|2 dS dt ≲ ∥fσ,v(ΠΓϕk
v , ϕk

σ)∥2
L∞((0,T )×Γ)|hj |2V |η|2L2(0,T ),

and the Lebesgue dominated convergence theorem gives for k → ∞

fσ,v(ϕk
v ,ΠΓϕk

σ)trΓhjη(t) −→ fσ,v(ϕv,ΠΓϕσ)trΓhjη(t) in L2((0, T ) × Γ ).

Together with the weak convergence of ΠΓpk
v and pk we have for k → ∞∫ T

0
⟨δΓ , Jk

σv,Γhj⟩W η(t) dt =
∫ T

0

∫
Γ

(
fσ,v(ϕk

σ,ΠΓϕk
v)Lp(ΠΓpk

v − pk) + Lσ(ΠΓϕk
v − ϕk

σ)
)

trΓhjη(t) dS dt

→
∫ T

0
⟨δΓ , Jσv,Γhj⟩W η(t) dt.

Using the densities of ∪k∈NHk in V , ∪k∈NH0
k in V0 and ∪k∈NYk in X, and the fundamental lemma of the

calculus of variations, we obtain a solution tuple (ϕ, µP , µH , v, p, ϕv, vv, pv) to our model (14) and (16) in
the weak sense as defined in Definition 1.

Energy inequality
It remains to prove that found solution tuple satisfies the energy inequality (30). First, we note that norms

are weakly/weakly-∗ lower semicontinuous, e.g., we have µk
P ⇀ µP in L2(0, T ; V ) and therefore, we infer

∥µP ∥L2(0,T ;V ) ≤ lim inf
k→∞

∥µk
P ∥L2(0;T ;V ).

We apply the Fatou lemma on the continuous and non-negative function Ψ to obtain∫
Ω

Ψ(ϕP , ϕH , ϕN ) dx ≤ lim inf
k→∞

∫
Ω

Ψ(ϕk
P , ϕk

H , ϕk
N ) dx.
Consequently, passing the limit k → ∞ in the discrete energy inequality (55) leads to (30). □
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6. Numerical simulations

We present in this section two applications of the theory presented earlier. The first is the simple scenario
in which two straight and idealized blood vessels are considered, one representing an artery and the other
a vein. This means that the tissue block containing the two vessels is supplied nutrients by a single artery
and drained of nutrients by a single vein. In between the two vessels, a tumor core is present which accepts
nutrients injected through an inlet of the artery. The second scenario deals with a small blood vessel network
described by data in [57] and on the following web page: https://physiology.arizona.edu/sites/default/file
s/brain99.txt. At four inlets of this network, nutrients are injected and transported through the network.
As in the first scenario, the impact of the nutrients on a small tumor core surrounded by the network is
investigated. We note that in all cases we consider a stationary vessel structure; for evolving and bifurcating
vessels we refer to the further work [58].

To solve the one-dimensional partial differential equations (16) numerically, the vascular graph model
(VGM) is employed [59,60]. This method corresponds in principle to a vertex centered finite volume method
with a two-point flux approximation. For the three-dimensional partial differential equations presented in
Section 2.3 a mixed finite volume-finite element discretization method is employed. The equations governing
the pressure and nutrients in tissue, which are directly coupled with the one-dimensional system, are solved
by a standard cell-centered finite volume scheme. Since the permeability of the cancerous and healthy tissue
is given by a scalar field, a two-point flux approximation of the fluxes is used. For the remaining species,
we consider a continuous and piecewise linear finite element approximation over a uniform cubic mesh. The
coupled nonlinear partial differential equations are discretized in time using the semi-implicit Euler method.
To solve the nonlinear system of equations arising in each time step, a fixed point iteration method is applied.
We consider following double-well potential in free energy functional in (3)

Ψ(ϕP , ϕH , ϕN ) = CΨT
ϕ2

T (1 − ϕT )2. (63)

.1. Tumor between two straight vessels

We consider a tissue domain Ω = (0, 2)3 containing two blood vessels aligned along the z-axis. The center
ines of the vessels are located diagonally opposite to each other. The center line of the Vessel 1 and 2 pass
hrough (0.2, 0.2, 1) and (1.8, 1.8, 1), respectively. We choose a radius of R = 0.08 and R = 0.1 for Vessel 1
nd 2. At the inlets of Vessel 1, located at (0.2, 0.2, 0) and (0.2, 0.2, 2), pressure values of 10 000 and 5000 are
rescribed. The inlets of Vessel 2 are located at (1.8, 1.8, 0) and (1.8, 1.8, 2). Here, we consider the pressure
alues 1000 and 2000, respectively. Thus, Vessel 2 will act as a vein taking up nutrients and blood plasma
rom the tissue domain. On the other hand Vessel 1 has the function of an artery transporting nutrients
nto the tissue block Ω . We note that we choose the boundary values such that the velocities are sufficiently
arge in order to ensure that the transport processes are visible in the simulations. Based on the pressure
oundary conditions, we choose the boundary conditions for the nutrients as follows:

• ϕv = ϕv,inlet = 1 at (0.2, 0.2, 0).
• ϕv = 0 at (1.8, 1.8, 2).
• At all the remaining boundaries, we consider free flow boundary conditions.

he initial tumor core is given by a ball of radius 0.3 and centered at (1, 1, 1). Within the tumor core, the
otal tumor volume fraction, ϕT , decays smoothly from 1 in the center to 0 on the boundary of the ball.
hereby, the necrotic and hypoxic volume fractions, ϕN and ϕH , are set to zero. In the rest of the domain
ll the volume fractions for the tumor species are set to 0 at t = 0. The nutrient volume fraction, in the

issue domain Ω , is initially fixed to a constant initial value of 0.6, which is below the threshold values for

29

https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt


M. Fritz, P.K. Jha, T. Köppl et al. Nonlinear Analysis: Real World Applications 61 (2021) 103331

g
W

a
t
M
t
p

m
d
p

D

t
b
v
c

a
a
g
fi

6

c
A
r
w
v

Table 1
List of parameters and their values for the numerical experiments described in Sections 6.1
and 6.2. Parameters not mentioned below are set to zero.

Parameter Value Parameter Value Parameter Value

λP 5 λPh
0.5 λA 0.005

λAh
0.005 λP H 1 λHP 1

λHN 1 σP H 0.55 σHP 0.65
σHN 0.44 εP 0.005 εH 0.005
MP 50 MH 25 λTAF P

10
DTAF 0.5 mTAF 1 Lp 10−7

Dσ 1 mσ 1 K 10−9

DMDE 0.5 mMDE 1 Dv 0.1
µbl 1 Lσ 10 λECMD

5
λECMP

0.01 λMDED
1 λMDED

1
ϕECMP

0.5 CΨT
0.045 – –

prolific-to-hypoxic transition and above the threshold value for hypoxic-to-prolific transition. We also set
ϕECM = 1 at t = 0. According to (15) homogeneous Neumann boundary conditions are prescribed on ∂Ω .

As a simulation time period, the interval (0, T ) with T = 5 is considered and the size of the time step is
iven by ∆t = 0.025. The spatial domain Ω is discretized by cubic elements with an edge length of h = 0.025.
e choose the parameters as listed in Table 1.
Plots of the tumor species ϕT , ϕP , ϕH at the z = 1 plane in the domain Ω at time points t ∈ {3, 4, 5}

re shown in Fig. 3. In Fig. 4, the tumor phases are shown along a one-dimensional line. It can be observed
hat the tumor separates into its three phases and moves towards the nutrient-rich regions of the domain.
oreover, the contour lines of the total tumor and its phases is presented at different times in Fig. 5. We see

hat tumor is growing towards the artery. As expected, the proliferation is higher near the artery. In Fig. 6,
lots of TAF, MDE, ECM at the time point t = 5 in the z = 1 plane of Ω are shown (see Fig. 7).

Fig. 8 contains simulation results for the different values of parameters at t = T = 5. Among the numerous
odel parameters, we focused on the chemotactic constant χc, mobility MP , proliferation rate λP , nutrient
iffusion coefficient Dσ, and permeability constant Lσ. We vary one of these parameters while keeping other
arameters fixed to their respective values listed in Table 1.

It can be observed that all selected parameters strongly affect the tumor growth. Except for the parameter
σ, the larger the remaining parameters, the faster the tumor cells move away from the vein and towards

he nutrient rich artery. This means that for the chosen parameter values, the fluxes Jα, α ∈ CH given
y (2), dominate the corresponding convective terms in (14) so that the tumor cells can move against the
elocity field. It can be stated that for these parameter choices, the model simulates the migration of tumor
ells towards the nutrient sources in the vicinity.

Fig. 9 shows the pressure distribution in the vessels as well as the tissue pressure and velocity field within
plane that is perpendicular to the z-axis and located at z = 1. The tissue pressure ranges between 1500

nd 7500, which means that it is bounded by the extreme pressures in the vascular system. Furthermore, a
radient in the tissue pressure can be detected pointing from the artery to the vein. As a result, the velocity
eld is orientated from the artery to the vein.

.2. Tumor surrounded by a network

In the second subsection, we consider a small capillary network given by the data in [57]. To keep the same
omputational domain as in the previous subsection, the network is scaled such that it fits into Ω = (0, 2)3.
fter scaling, the resulting network has maximum, minimum, and mean vessel radius 0.0613, 0.0307, 0.0418

espectively. At the inlets that are marked by an arrow, see Fig. 10, we prescribe the pressure pin = 25 000,
hile for all the other inlets, we use pout = 10 000 as a boundary value. Again, we choose the boundary

alues synthetically in order to ensure that the transport processes are visible in the simulations. Further,
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Fig. 3. Evolution of the total tumor ϕT (top), prolific ϕP (middle), and hypoxic ϕH (bottom) volume fractions at the times t ∈ {3, 4, 5}
left, middle,right) in the z = 1 plane of the domain Ω. On the two vessels the nutrients are described by the 1D constituent ϕv.

he boundary condition for ϕv is given by ϕv = ϕv,inlet = 1 if it holds pv = pin, and free outflow boundary
f pv = pout.

Contrary to the previous subsection, the spherical tumor core has a radius of 0.25 and the center
1.3, 0.9, 0.7). The same model parameters are employed. The domain Ω is discretized using cubic elements
f mesh size 0.025 and final time and time step of the simulation are T = 5 and ∆t = 0.025.

In Fig. 11, the tumor cell volume fraction ϕT , prolific cell volume fraction ϕP , and hypoxic cell volume
fraction ϕH are shown at z = 0.8 plane and at time points t ∈ {3, 4, 5}. Finally in Fig. 12, the contour plots
for ϕT = 0.8 and ϕT = 0.95 are presented. Further, the hypoxic phase is shown inside the tumor. In Fig. 13,
plots of TAF, MDE, ECM at t = 5 in z = 0.8 plane are shown.

The behavior of the tumor cells is similar to the two-vessel scenario. It seems that for the given parameter
set the tumor cells are attracted by the nutrient rich blood vessels of the network. As can be observed in
Fig. 11 (last row), the chemical potential of the tumor exhibits high gradients at the interface between tumor
and healthy tissue. Therefore, the corresponding flux of the chemical potential given by (2) is potentially
high at this location. As a result the tumor cells are pulled towards the interface between cancerous and
31
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Fig. 4. Left: Evolution of the tumor volume fraction (ϕT ) in the z = 1 plane of the domain Ω. Right: Plots of tumor (ϕT ), prolific
ϕP ), hypoxic (ϕH ) and necrotic (ϕN ) volume fractions along the line passing through the points (0, 0, 1) and (2, 2, 1) in the domain
. From top row to bottom row, the plots correspond to time t ∈ {3, 4, 5}.

Fig. 5. Evolution of contour plots of the tumor volume fraction ϕT with vessels (top) at 0.8 (light red) and 0.95 (red) at the time
∈ {4.25, 4.75, 5} (left to right); the necrotic core is plotted at the contour line ϕN = 0.42 (black). Contour plots of the tumor phases
ithout vessels (bottom) at ϕP = 0.5 (green), ϕH = 0.45 (orange), ϕN = 0.4 (dark red). (For interpretation of the references to color

n this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Plots of ϕTAF (left), ϕMDE (middle), and ϕECM (right) at time t = 5 in the z = 1 plane of the domain Ω. The colors
(horizontal color bar) on the vessels show the transport of the 1D nutrient (ϕv). The production of TAF and MDE is maximal where
the hypoxic tumor phase is located. The decay of ECM happens in the regions where MDE is produced. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Effect of the mobility MP (top) for MP ∈ {10, 25, 50} (left to right) and proliferation rate λP (bottom) for λP ∈ {2, 5, 10}
(left to right) on the growth of the tumor volume. The color bar for 1D nutrients (left) and total tumor volume fraction (right) in
included at the bottom. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

healthy tissue. Apparently, the flux is particularly high near the nutrient rich vessels such that the tumor
cells move preferably towards the nutrient rich vessels.

Fig. 14 shows the tissue pressure and the corresponding velocity fields in z = 0.8 plane. Just as in the
two-vessel scenario, the pressure distribution induces a velocity field that goes from the high pressure region
to the low pressure region.
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Fig. 8. Effect of the chemotactic constant χc (top) for χc ∈ {0, 0.01, 0.05} (left to right), permeability of the vessel wall Lσ (middle)
or Lσ ∈ {0.5, 5, 10} (left to right), and diffusivity constant Dσ (bottom) for Dσ ∈ {0.2, 1, 5} (left to right) on the growth of the tumor
olume. The color bar for 1D nutrients (left) and total tumor volume fraction (right) in included at the bottom. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Pressure (left) and velocity field (right) in a plane perpendicular to the z-axis (at z = 1) of the domain Ω. The artery is
ocated in the right corner with a pressure decay from 10 000 to 5000. The vein is located in the left corner with a pressure decay

from 2000 to 1000. The velocity field induced by the pressure distribution is directed from the artery towards the vein.
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w

Fig. 10. Outline of the scaled blood vessel network with an initial tumor core. The tumor core is represented by a contour surface

ith respect to ϕT (at ϕT = 0.1). At the four inlets, indicated by an arrow, nutrients are injected i.e. at these boundaries, we set
ϕv = ϕv,inlet = 1 and pv = pin.

7. Summary and outlook

In this work, we have presented a 3D–1D coupled multispecies model for tumor growth including the
influence of nutrient transport in a vascular system that is located in the vicinity of a solid tumor. Flow
and transport of nutrients within the vascular system are governed by one-dimensional partial differential
equations. The corresponding flow and transport processes in the healthy and tumor tissue are based on
Darcy’s law as well as a standard convection–diffusion equation. Coupling of the three-dimensional equations
with their one-dimensional counterparts is done via filtration laws and source terms. In the source terms
of the three-dimensional partial differential equations, Dirac measures occur. They are concentrated on the
vessel surfaces of the vascular system, since there the exchange processes between the tissue and the vascular
system take place. The remaining three-dimensional equations governing the distribution of the tumor cells
are of Cahn–Hilliard type. The evolution of matrix degrading enzymes and the tumor angiogensis factor
are modeled by convection–diffusion equations. Lastly, the extracellular matrix density is described by an
abstract ordinary differential equation.

The centerpiece of our work is a mathematical analysis of this model with a focus on the existence of
solutions. We have shown the existence of weak solutions. Our proof is based on the Faedo–Galerkin method.
Thereby, the system of partial differential equations is semi-discretized in space and reduced to a system
of ordinary differential equations. Using the Cauchy–Peano theorem we show that the system of ordinary
differential equations exhibits a solution. In a next step, the existence of weak solutions with respect to the
partial differential equations is derived by means of the Banach–Alaoglu theorem. Finally, we present some
simulation results for two different settings, illustrating the performance of our model. Our simulation results
indicate that the tumor cells sense the vessels with an increased nutrient concentration and move towards
them. Furthermore, the impact of several model parameters on the solution variables is discussed.

Among extensions and applications of the models described here are the simulation and optimal control
of chemotherapy drug and radiation as well as modeling of the onset of metastasis. Simulation of these
protocols and phenomena represent challenging goals for future work.
35



M. Fritz, P.K. Jha, T. Köppl et al. Nonlinear Analysis: Real World Applications 61 (2021) 103331
Fig. 11. Distribution of the tumor cell volume fraction ϕT (top), prolific cell volume fraction ϕP (middle), and hypoxic cell volume
fraction ϕH (bottom) for t ∈ {3, 4, 5}. The tumor cells migrate towards to nutrient rich vessels.

Fig. 12. Evolution of contour plots of the tumor volume fraction ϕT at the values 0.8 (light red) and 0.95 (red), and of the hypoxic
phase ϕH at 0.35 at times t ∈ {3, 3.5, 4} (left to right). The tumor growth is directed towards the nutrient rich vessels. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Plots of ϕTAF (left), ϕMDE (middle), and ϕECM (right) at time t = 5 in the z = 0.8 plane of the domain Ω. The colors
horizontal color bar) on the vessels show the transport of the 1D nutrient (ϕv). As in the case of two-vessels setting, the production
f TAF and MDE is maximal where the hypoxic region is located. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 14. Plots of pressure (left) and velocity field (right) in the z = 0.8 (top) and z = 1.2 (bottom) planes in the domain Ω. The
plots correspond to the simulation time t = 5. As in the two-vessel case, the velocity field is pointing from the high pressure region
to the low pressure region.
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