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Abstract

In this work, we present a coupled 3D–1D model of solid tumor growth within a dynamically changing vascular network to
acilitate realistic simulations of angiogenesis. Additionally, the model includes erosion of the extracellular matrix, interstitial
ow, and coupled flow in blood vessels and tissue. We employ continuum mixture theory with stochastic Cahn–Hilliard type
hase-field models of tumor growth. The interstitial flow is governed by a mesoscale version of Darcy’s law. The flow in the
lood vessels is controlled by Poiseuille flow, and Starling’s law is applied to model the mass transfer in and out of blood
essels. The evolution of the network of blood vessels is orchestrated by the concentration of the tumor angiogenesis factors
TAFs); blood vessels grow towards the increasing TAFs concentrations. This process is not deterministic, allowing random
rowth of blood vessels and, therefore, due to the coupling of nutrients in tissue and vessels, makes the growth of tumors
tochastic. We demonstrate the performance of the model by applying it to a variety of scenarios. Numerical experiments
llustrate the flexibility of the model and its ability to generate satellite tumors. Simulations of the effects of angiogenesis on
umor growth are presented as well as sample-independent features of cancer.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

In this work, we present new computational models and algorithms for simulating and predicting a broad range
f biological and physical phenomena related to cancer at the tissue scale. We consider the growth of solid vascular
umors inside living tissue containing a dynamically evolving vasculature. One of the main goals of this work is to
rovide realistic simulations of the vascular growth characterizing angiogenesis, whereby blood vessels sprout and
nvade the domain of the solid tumor when prompted by concentrations of proteins collectively referred to as tumor
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ngiogenesis factors (TAFs); these proteins are produced by nutrients-starved cancerous cells. The tumor growth is
ecessarily depicted by a multispecies model in which tumor cell concentrations are categorized as proliferative,
ypoxic, or necrotic. To capture the complex interaction of cell species and the evolving interfaces between species,
ontinuum mixture theory is used as a framework for constructing mesoscale stochastic phase-field models of the
ahn–Hilliard type. Other critical phenomena are also addressed by this class of models, including the erosion
f the extracellular matrix (ECM) due to concentrations of matrix-degrading enzymes (MDEs, such as matrix
etalloproteinase and urokinase plasminogen activators) that erode the ECM and permit the invasion of tumor

ells as a prelude to metastasis [1,2].
The volume of an isolated colony of tumor cells will not generally grow beyond approximately 1.0 mm3 [3–5]

unless sufficient nutrients and oxygen are supplied for proliferation. To acquire such nutrients, cancerous cells
promote angiogenesis [6,7]. Low levels of oxygen and nutrient result in tumor cells entering the hypoxia phase
during which they remain dormant and release various proteins such as TAFs that promote the proliferation of
endothelial cells and new vessel formation. Similarly, low oxygen levels can generate irregular invasive tumors
governed by haptotaxis [1,2]. Because angiogenesis is one of the major processes through which tumors grow,
anti-angiogenic drugs that inhibit the formation of the new vascular structure are often identified as one of the
approaches to delay or arrest the growth of cancer. Thus, a realistic model of angiogenesis is of critical importance
for studying the effectiveness of anti-angiogenic drugs.

Typically, the vasculature near the tumor core in the early stages of tumor growth may not effectively supply
nutrients to the tumor. The vasculature evolves rapidly and, therefore, the vessel walls are not fully developed and
may be destroyed due to pressure (proliferation of tumor cells result in higher pressure nearby), the pruning of
vessels due to insufficient flow for a sustained period and, vasculature adaptation and remodeling [8–12]. Highly
interconnected and irregular vasculature with inefficient blood vessels causes low blood flow rates to the tumor,
making it possible that therapeutic drugs miss the tumor mass altogether [12]. Shear and circumferential stresses
due to blood flow result in vascular adaptation effects such as vessel radii adaptation, see [11,13,14]. All of these
phenomena are represented by the models described herein.

Earlier models taking into account angiogenesis include lattice-probabilistic network models, see [8,12–17]. An
overview of this class of models is given in [18]. Another class of models referred to as agent-based models has
been proposed and extensively studied. There, the idea is to introduce a phase-field for the tip endothelial cells
that takes a value 1 inside the vessel and 0 outside and through the agents, which can move anywhere in the
simulation domain following certain rules, which can be designed to trigger the sprouting of new vessels; see [19–
22]. These models do not capture blood circulation in the vessel and, therefore, are unable to be truly coupled to the
tumor growth. In [23], a dimensionally coupled model for drug delivery based on MRI data and a study of dosing
protocols is considered with drug flow in the vessels governed by algebraic rules instead of PDEs. More recently,
vasculature models involving a network of straight cylindrical vessels supporting the 1D flow of nutrient, oxygen,
and therapeutic drugs and coupled to the 3D tissue domain by versions of the Starling or Kedem–Katchalsky law
have been presented; see [24–26].

We consider a class of 3D–1D vascular tumor models [27] that approximates the flow within the blood vessels
by one-dimensional flow based on the Poiseuille law effectively reducing the flow in the three-dimensional vessels
to the flow in a network of one-dimensional vessel segments. While coupling the flow in the vessels and tissue, the
blood vessels’ three-dimensional nature is retained by approximating the vessels as a network of straight-cylinders
and applying the fluid exchange at the walls of cylindrical segments. From a mathematical and computational point
of view, a complicating factor is the use of one-dimensional characterizations of vessel segments in the vascular
network embedded in three-dimensional domains of the tissue and the tumor within the tissue and the assignment of
mechanical models to this 3D–1D system to depict interstitial flow and pressure fluctuations. Mathematical analysis
showing well-posedness and existence of weak solutions for the class of 3D–1D model considered in this work is
performed in a recent paper [27].

In our model, flow in vessels is governed by 1D Poiseuille law, whereas the flow in tissue is derived by treating
the tissue domain as a porous medium and applying a version of Darcy’s law. The model consists of nutrients in
the tissue and vessels; nutrients in the vessels are governed by the 1D advection–diffusion equation and advection–

diffusion–reaction equation in the tissue. Flow and nutrients in the tissue and vessel are coupled; we assume that
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essel walls are porous, resulting in the advection and diffusion-driven exchange of nutrients and coupling of the
xtravascular and intravascular pressures. Some aspects of the 1D model architecture and coupling of 3D and 1D
odels are based on previous works, see [26,28,29]. The 3D tissue domain includes, in addition to the nutrients,
CM, tumor species such as proliferative, hypoxic, necrotic, and diffusive molecules such as TAF and MDE.

As noted earlier, the 3D tumor model is derived from the balance laws of continuum mixture theory as in [19,30–
4], and representations of the principal mechanisms governing the development and evolution of cancer, see,
.g., [19,35]. Especially, we note the comprehensive developments of diffuse-interface multispecies models presented
n [36,37], the ten species models derived in [19], and the multispecies nonlocal models of adhesion and promotes
tumor invasion due to ECM degradation described in [38]. Angiogenesis models embedded in models of hypoxic

nd cell growth are presented in [19,24,25,27]. Related models of extracellular matrix (ECM) degradation due to
atrix-degrading enzymes (MDEs) and subsequent tumor invasion and metastasis are discussed in [38–41]. Several

f the earlier mechanistic models of tumor growth focused on modeling the effects of mechanical deformation and
lood flow, and fluid pressure on tumor growth, e.g., [42–47].

A key new feature of the models proposed here is the dynamic growth/deletion of the vascular network and
ull coupling between the dynamic network and tumor system in the tissue microenvironment. In response to TAF
enerated by nutrient-starved hypoxic cells, new vessels are formed. Due to the formation of new vessels, the local
onditions such as nutrient concentration changes near the tumor, affecting TAF production and promoting a higher
roliferation of tumor cells. The rules by which the network grows, or existing vessels are deleted due to insufficient
ow and dormancy, are based on the experimentally known causes of angiogenesis and are parameterized so that
arious aspects of the network growth algorithm can be adjusted based on available experimental data. By including
he time-evolution of the larger vascular tissue domain and the sprouting, growth, bifurcation, and pruning of the
ascular network orchestrated by a combination of blood supply and tumor-generated growth factors, a more realistic
epiction of tumor growth than the more common isolated-tumor (avascular) models is obtained.

This article is organized as follows: In Section 2, we introduce various components of the model, such as the
issue and 1D network domain and the equations governing various fields. The details associated with the vessel
etwork growth are presented in Section 3. Spatial and temporal discretization and solver schemes for the highly
onlinear coupled system of equations are discussed in Section 4. We apply mixed finite volumes, finite element
pproximations to the model equations. The systems of equations arising in each time step are solved using a semi-
mplicit fixed point iteration scheme. In Section 5, the model is applied to various situations, and several simulation
xperiments are presented. For further details on our implementation of the solver, we refer to the open-source code
t https://github.com/CancerModeling/Angiogenesis3D1D. Concluding comments are given in Section 6.

. Mathematical modeling

In this work, a colony of tumor cells in an open bounded domain Ω ⊂ R3, e.g., representing an organ, is
onsidered. It is supported by a system of macromolecules consisting of collagen, enzymes, and various proteins,
hat constitute the extracellular matrix. We focus on phenomenological characterizations to capture mesoscale and

acroscale events. Additionally, we consider a one-dimensional graph-like structure Λ inside of Ω forming a
icrovascular network, see Fig. 1.
The single edges of Λ of vessel components are denoted by Λi such that Λ is given by Λ =

⋃N
i=1 Λi and each

dge Λi , i ∈ {1, . . . , N }, is parameterized by a corresponding curve parameter si such that

Λi =
{

x ∈ Ω
⏐⏐ x = Λi (si ) = xi,1 + si · (xi,2 − xi,1), si ∈ (0, 1)

}
,

here xi,1 ∈ Ω and xi,2 ∈ Ω mark the boundary nodes of Λi , see Fig. 2. For the total 1D network Λ, we introduce
global curve parameter s, which is interpreted in the following way: s = si , if x = Λ(s) = Λi (si ). At each value

f the curve parameter s, various 1D constituents exist, which interact with their respective 3D counterpart in Ω .
We introduce the surface Γ of the microvascular network Λ to formulate the coupling between the 3D and 1D

onstituents in Sections 2.2 and 2.4. For simplicity, it is assumed that the surface for a single vessel is approximated
3
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Fig. 1. Setup of the domain Ω with the 1D microvascular network Λ and a tumor mass, which is composed of its proliferative (φP ),
ypoxic (φH ) and necrotic (φN ) phases.

Fig. 2. Modeling of a single edge Λi contained in the 1D graph-like structure with boundary nodes xi,1 and xi,2. The cylinder Γi has a
onstant radius Ri .

y a cylinder with a constant radius, see Fig. 2. The radius of a vessel that is associated with Λi is given by Ri and
he corresponding surface is denoted by Γi ; i.e., we have as the total surface Γ =

⋃N
i=1 Γi .

.1. Governing constituents

The principal dependent variables characterizing the growth and decline of the tumor mass are taken to be a set
f scalar-valued fields φα with values φα(x, t) at a time t ∈ [0, T ] and point x ∈ Ω ⊂ R3, representing the volume
ractions of constituents in the space–time domain Ω × [0, T ]. The primary feature of our model of tumor growth is
he application of the framework of continuum mixture theory in which multiple mechanical and chemical species
an exist at a point x ∈ Ω at time t > 0. Therefore, for a medium with Nα ∈ N interacting constituents, the volume
raction of each species φα , α ∈ {1, . . . , Nα}, is represented by a field φα with the value φα(x, t) at (x, t) and the
roperty

∑
α φα(x, t) = 1.

We separate the tumor volume fraction φT = φT (x, t) into the sum of three phases φT = φP + φH + φN , where
P = φP (x, t) is the volume fraction of proliferative cells, φH = φH (x, t) that of hypoxic cells, and φN = φN (x, t)

s the volume fraction of necrotic cells, see Fig. 1. Proliferative cells have a high probability of mitosis, i.e., division
nto twin cells, and to produce growth of the tumor mass. Hypoxic cells are those tumor cells which are deprived
f sufficient nutrient to become or remain proliferative. Lastly, necrotic cells have died due to the lack of nutrients.

The nutrient concentration and the tumor angiogenesis factor (TAF) over Ω × [0, T ] are represented by scalar
elds φσ = φσ (x, t) and φTAF = φTAF (x, t), respectively. The tumor cells response to hypoxia, i.e., when φσ is
elow a certain threshold, is the production of an enzyme that increases cell mobility and activates the secretion
f angiogenesis promoting factors characterized by φTAF . As a particular case of TAFs, we consider the vascular
ndothelial growth factor (VEGF), which promotes sprouting of endothelial cells forming the tubular structure of

lood vessels, which grow into new vessels and supply nutrients to the hypoxic volume fraction φH .

4
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Another consequence of hypoxia is the release of matrix-degrading enzymes (MDEs), e.g., urokinase plas-
inogen and matrix metalloproteinases, by the hypoxic cells. We denote the volume fraction of the MDEs by
MDE = φMDE (x, t). The primary feature of the MDEs is the erosion of the extracellular matrix, whose volume

fraction is denoted by φECM = φECM (x, t). Consequently, the erosion of the ECM produces room for the invasion
of tumor cells, which increases φT in the ECM domain and therefore, raises the likelihood of metastasis. Below a
certain level necrosis occurs and cells die, entering the necrotic phase φN . Tumor cells may also die naturally, in a
process which is called apoptosis.

Within the one-dimensional network Λ, we introduce the constituents φv = φv(s, t) and vv = vv(s, t), which
epresent the one-dimensional counterparts of the local nutrient concentration φσ and the volume-averaged velocity
. Additionally, we consider the pressures pv = pv(s, t) and p = p(x, t) in the network and tissue domain,
espectively. In summary, we refer to the table below for the primary variables and constituents of the model.

Constituents

φ Vector of all 3D species volume fractions
φα Volume fraction of 3D species α ∈ A = {P, H, N , σ, M DE, T AF, EC M}

µβ Chemical potential, β ∈ {P, H}

φv Volume fraction of nutrients in 1D network Λ
Flow model
v Convective velocity in tissue domain Ω
p Pressure in tissue domain Ω
pv Pressure in 1D network domain Λ
vv Velocity of interstitial flow in tissue domain Λ

Functions
Ψ Double-well potential, see (2.2)
mα Mobility function, see (2.1)
Sα Mass source, see (2.5)
Wα Wiener process, see (2.3)
Jσv Mass source density of nutrient due to 1D network (2.6)

2.2. Three-dimensional model governing the tumor constituents

The evolution of the constituents φα must obey the balance laws of continuum mixture theory (e.g., see [19,48]).
Assuming constant and equal mass densities of the constituents, the mass balance equations for the mixture read
as follows:

∂tφα + div(φαvα) = −divJα(φ) + Sα(φ),

where vα is the cell velocity of the αth constituent, and Sα describes a mass source term that may depend on all
species φ = (φP , φH , φN , φσ , φMDE , φTAF , φECM ). Moreover, Jα represents the mass flux of the αth constituent and
is given by:

Jα(φ) = −mα(φ)∇µα,

where µα denotes the chemical potential of the αth species, and mα is its corresponding mobility function. Generally,
the mobilities may depend on many species, but in this work we consider the following cases,

mα(φ) = Mαφ2
α(1 − φT )2 Id , α ∈ {P, H},

mβ(φ) = Mβ Id , β ∈ {σ, MDE, TAF},
(2.1)

where Mα are mobility constants, and Id is the (d × d)-dimensional identity matrix. For the remaining species φN

and φECM , we choose m N = m ECM = 0 in accordance to the non-diffusivity of the necrotic cells and the ECM;
see [2]. Following [19,36,49], we define the chemical potential µα as the first variation (Gâteaux derivative) with
respect to φα of the Ginzburg–Landau–Helmholtz free energy functional E(φ). The free energy in this work is

designed to capture the following key effects:

5
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• Phase change in tumor species φT , φP , φH . For example, φT can change (conditions permitting) from a healthy
phase φT = 0 to a tumor phase φT = 1. This is typically achieved by introducing a double-well potential

Ψ = Ψ (φT , φP , φH ) =

∑
α∈{T,P,H}

CΨαφ2
α(1 − φα)2 (2.2)

to the free energy, where CΨα , α ∈ {T, P, H}, are constants. In addition to phase separation between healthy
and cancer phases (using the energy term CΨT φ2

T (1 −φT )2), we have also introduced energy terms that promote
phase separation between proliferative and non-proliferative and hypoxic and non-hypoxic phases. It is possible
to consider different forms of the double-well potential [27], however, in this work we will consider Ψ in (2.2)
with CΨP = CΨH = 0, see Section 5.

• Promote phase separation between two phases of species φT , φP , φH . For example, a model could exhibit
phase values at x between, say, φα = 0 and φα = 1, with a change in gradient, ∇φα , at the interface of these
phases. Such changes are manifested as surface energy terms in the form of penalties on the magnitude of ∇φα

of the form

ε2
α

2
|∇φα|

2,

where εα controls the thickness of the phase interface.
• Diffusion driven mobilities of species φσ , φTAF , φMDE . These effects are captured by adding the diffusive

energies

Dβ

2
φ2

β,

where Dβ , β ∈ {σ, TAF, MDE}, are diffusion coefficients.
• Chemotaxis and haptotaxis effects. Chemotaxis represents a movement of cells towards a gradient of nutrients

(i.e., along the direction of increasing nutrients). Similar to chemotaxis, the tumor cells show a tendency to move
along the ECM gradient, and this phenomenon is referred to as haptotaxis. These effects are incorporated via
the terms [50,51]

−(χcφσ + χhφECM )
∑

α∈{P,H}

φα,

where χc, χh are chemotaxis and haptotaxis coefficients, respectively. In the above energy terms, we exclude
necrotic cells to be consistent with our assumption that necrotic cells are immobile.

Combining these effects, the free energy takes the form

E(φ) =

∫
Ω

{
Ψ (φP , φH , φN ) +

∑
α∈{P,H}

ε2
α

2
|∇φα|

2
+

∑
β∈RD

Dβ

2
φ2

β − (χcφσ + χhφECM )
∑

α∈{P,H}

φα

}
dx,

here RD = {σ, MDE, TAF, ECM} is the set of species driven by reaction–diffusion type equations. We assume a
olume-averaged velocity v for the proliferative cells, hypoxic cells, and the nutrients concentration. This assumption
s regarded as reasonable whenever cells are tightly packed.

In thin subdomains at the interfaces of the phase fields, stochastic variations of the phase concentrations are
ossible. The variations in these regions of random behavior are bounded by noise parameters φω

α and noise intensity
α; the variations (along with the noise intensity) in φα , α ∈ {P, H}, are restricted to interface regions using function

Gα given by

Gα(φP , φH , φN ) = ωαH((φα − φω
α )(1 − φα − φω

α ))H((φT − φω
T )(1 − φT − φω

T )). (2.3)

ere, H denotes the Heaviside step function. Typically, the randomness in the evolution of species near the interface
s incorporated in the model in the form of cylindrical Wiener process on L2(Ω ), see [52–54]; we add G P ẆP and

G H ẆH to the mass balance equation for φP and φH . To keep the mass balance equations in standard form, we
lightly abuse the standard notation and use notation Ẇα such that Ẇαdt = dWα . Further details on Wiener processes

W and numerical discretization are provided in Section 4.
α

6
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Following these assumptions and conventions, we arrive at the following system of equations governing the
odel:

∂tφP + div(φPv) = div(m P (φ)∇µP ) + SP (φ) + G P (φP , φH , φN )ẆP ,

µP = ∂φPΨ (φP , φH , φN ) − ε2
P∆φP − χcφσ − χhφECM ,

∂tφH + div(φHv) = div(m H (φ)∇µH ) + SH (φ) + G H (φP , φH , φN )ẆH ,

µH = ∂φH Ψ (φP , φH , φN ) − ε2
H∆φH − χcφσ − χhφECM ,

∂tφN = SN (φ),
∂tφσ + div(φσv) = div(mσ (φ))(Dσ∇φσ − χc∇(φP + φH )) + Sσ (φ) + Jσv(φσ , p,ΠΓφv,ΠΓ pv)δΓ ,

∂tφMDE + div(φMDEv) = div(mMDE (φ)DMDE∇φMDE ) + SMDE (φ),
∂tφTAF + div(φTAFv) = div(mTAF (φ)DTAF∇φTAF ) + STAF (φ),

∂tφECM = SECM (φ),
−div(K∇ p) = Jpv(p,ΠΓ pv)δΓ − div(K Sp(φ, µP , µH )),

v = −K (∇ p − Sp(φ, µP , µH )),

(2.4)

n the space–time domain Ω × (0, T ) and we supplement the system with homogeneous Neumann boundary
onditions. In the above set of governing equations, the velocity v is given by modified Darcy’s law, where K
enotes the hydraulic conductivity. The source term Sp (defined below) represents a form of the elastic Korteweg
orce, e.g., see [55], and includes a correction of the chemical potential by the haptotaxis and chemotaxis adhesion
erms following [33]. Here Jpv and Jσv are the fluid flux and nutrient flux as described in Section 2.3. We consider
he following choices of the coupling source functions; see [27],

SP (φ) = λ
pro
P φσφP (1 − φT ) − λ

deg
P φP − λPHH(σPH − φσ )φP + λHPH(φσ − σHP )φH ,

SH (φ) = λ
pro
H φσφH (1 − φT ) − λ

deg
H φH + λPHH(σPH − φσ )φP − λHPH(φσ − σHP )φH

− λHNH(σHN − φσ )φH ,

SN (φ) = λHNH(σHN − φσ )φH ,

SECM (φ) = −λ
deg
ECMφECMφMDE + λ

pro
ECMφσ (1 − φECM )H(φECM − φ

pro
ECM ),

Sσ (φ) = −λ
pro
P φσφP − λ

pro
H φσφH + λ

deg
P φP + λ

deg
H φH − λ

pro
ECMφσ (1 − φECM )H(φECM − φ

pro
ECM )

+ λ
deg
ECMφECMφMDE ,

SMDE (φ) = −λ
deg
MDEφMDE + λ

pro
MDE (φP + φH )φECM

σHP

σHP + φσ

(1 − φMDE ) − λ
deg
ECMφECMφMDE ,

STAF (φ) = λ
pro
TAF (1 − φTAF )φHH(φH − φHP ) − λ

deg
TAFφTAF ,

Sp(φ, µP , µH ) = (µP + χcφσ + χhφECM )∇φP + (µH + χcφσ + χhφECM )∇φH .

(2.5)

ere, λ
pro
α and λ

deg
α denote the proliferation and degradation rate of the αth species, respectively, λαβ the transition

ate from the αth to the βth volume fraction, σαβ the corresponding nutrient threshold for the transition, and H is
he Heaviside step function. Further, φ

pro
ECM denotes the threshold level for the ECM density in order to activate the

roduction of ECM fibers. Moreover, we introduce the projection ΠΓ of the 1D quantities onto the cylinder Γ via
xtending its function values ΠΓφv(s) = φv(si ) for all s ∈ ∂ BRi (si ).

.3. Interaction between the 3D and 1D model

We apply the Kedem–Katchalsky law [56] to quantify the flux of nutrients across the vessel surface; i.e., Jσv in
2.4) is given by

Jσv(φσ , p, φv, pv) = (1 − rσ )Jpv(p, pv)φv
σ + Lσ (φv − φσ ), (2.6)

where Jpv denotes the flux, which is caused by the flux of blood plasma from the vessels into the tissue or vice
versa. Further, J is governed by Starling’s law [57], i.e., J (p, p ) = L (p − p) where p denotes an averaged
pv pv v p v

7
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ressure over the circumference of cylinder cross-sections and is computed in the following way: For each point si
on the curve Λi , we consider the circle ∂ BRi (si ) of radius Ri , which is perpendicular to Λi ; see Fig. 2. Thus, the
tissue pressure p is averaged with respect to ∂ BRi (si ),

p(si ) =
1

2π Ri

∫
∂ BRi (si )

p|Γ dS.

The part Jpvφ
v
σ in the Kedem–Katchalsky law (2.6) is weighted by a factor 1−rσ , rσ being a reflection parameter,

introduced to account for the permeability of the vessel wall with respect to the nutrients. The value of φv
σ is set

to φv for pv ≥ p and to φσ otherwise. The second term on the right hand side of (2.6) is a Fickian type law,
ccounting for the tendency of the nutrients to balance their concentration levels, where the permeability of the
essel wall is represented by the parameter Lσ .

The interaction between the vascular network and the tissue occur at the vessel surface Γ , and thus, we
concentrate the flux Jσv by means of the Dirac measure δΓ ; i.e., we define

δΓ (ϕ) =

∫
Γ

ϕ|Γ dS,

for a sufficiently smooth test function ϕ with compact support.

2.4. One-dimensional model for transport in the vascular network

The one-dimensional vessel variables φv and pv represent averages across cross-section of the blood vessels.
hus, the one-dimensional variables φv and pv on a 1D vessel Λi , i ∈ {1, . . . , N }, depend only on si . See also [26]

for more details related to the derivation of the 1D pipe flow and transport models. With these conventions, the 1D
model equations for flow and transport on Λi are given by

∂tφv + ∂si (vvφv) = ∂si (mv(φv)Dv∂si φv) − 2π Ri Jσv(φσ , p, φv, pv),

R2
i π ∂si (Kv,i ∂si pv) = 2π Ri Jpv(p, pv).

(2.7)

Here, we have introduced the permeability Kv,i =
1
8 R2

i /µbl of the i th vessel with µbl being the viscosity of blood.
We assign µbl a constant value, i.e., non-Newtonian behavior of blood is not considered. The diffusivity parameter
Dv is set to the same value as Dσ . The blood velocity vv is given by the Darcy equation vv = −Kv,i∂si pv.

In order to interconnect pv and φv on Λi at the inner networks nodes on the intersections x ∈ ∂Λi \ ∂Λ, we
equire continuity conditions on pv and φv . Moreover, we enforce conservation of mass to obtain a physically
elevant solution. To formulate these coupling conditions in a mathematical way, we define for each bifurcation
oint x an index set

N (x) = { i ∈ {1, . . . , N } | x ∈ ∂Λi } .

e state the following continuity and mass conservation conditions at an inner node x ∈ ∂Λi :

pv|Λi (x) − pv|Λ j (x) = 0, for all j ∈ N (x)\{i},

φv|Λi (x) − φv|Λ j (x) = 0, for all j ∈ N (x)\{i},∑
j∈N (x)

−
R4

j π

8µbl

∂pv

∂s j

⏐⏐⏐
Λ j

(x) = 0,

∑
j∈N (x)

(
vvφv − mv(φv)Dv

∂φv

∂s j

)⏐⏐⏐
Λ j

(x) = 0.

3. Angiogenesis: Network growth algorithm

As noted earlier, angiogenesis is triggered by an increased TAF concentration φTAF around the pre-existing blood
vessels. After the TAF molecules are emitted by the dying hypoxic tumor cells, they move through the tissue matrix
and may encounter sensor ligands on the vessel surfaces. If the TAF concentration is large enough at the vessel
surfaces, an increased number of sensors in the vessel wall are activated and a reproduction of endothelial cells
forming the vessel walls is initiated. As a result, the affected vessels can elongate, resulting in two different kinds
8
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f vessel elongations or growth. In medical literature, see, e.g., [58,59], this process is referred to as apical growth
nd sprouting of vessels. The term apical growth is derived from the term apex denoting the tip of a blood vessel,
.e., apical growth is the type of growth occurring at the tip of a vessel. On the other hand, the sprouting of new
essels results in the formation of new vessels at other places on the vessel surface. In order to increase or decrease
he flow of blood and nutrients through the vessels, it is observed that the newly formed blood vessels can adapt their
essel radii which is caused, e.g., by an increased wall shear stress at the inner side of the vessel walls. Combining
hese mechanisms, an increased supply of nutrients for both the healthy and cancerous tissue can be achieved such
hat the tumor can continue to grow.

In the following, we describe how an angiogenesis step can be realized within our mathematical model. It is
ssumed that in such a step the apical growth is considered first and then the sprouting of new vessels is simulated.
t the end of an angiogenesis step, the radii of the vessels are adapted to regulate the blood flow. The 1D network

hat is updated during an angiogenesis step is denoted by Λold.

.1. Apical growth

Since the apical growth occurs only at the tips of the blood vessels, we consider all the boundary nodes x of the
etwork Λold contained in the inner part of Ω , i.e., x ∈ ∂Λold and x /∈ ∂Ω . Moreover, we assume that x is contained
n the segment Λi ⊂ Λold. At x, the value of the TAF concentration is denoted by φTAF (x). If this value exceeds

certain threshold T hTAF : φTAF (x) ≥ T hTAF , the tip of the corresponding vessel is considered as a candidate for
rowth.

There are two types of growth that are allowed to occur at the apex of a vessel: either the vessel can further
longate or it can bifurcate. In order to decide which event occurs, a probabilistic method is used. According to [60]
nd the references therein, the ratio ri = li/Ri of the vessel Λi follows a log-normal distribution:

pb(r ) ∼ LN (r, µr , σr ) =
1

r
√

2πσ 2
r

exp
(

−
(ln r − µr )2

2σ 2
r

)
. (3.1)

he parameters µr and σr represent the mean value and standard deviation of the probability distribution pb,
espectively. Using the cumulative distribution function of pb, we decide whether a bifurcation is considered or
ot. This means that a bifurcation at x ∈ ∂Λi ∪ ∂Λ is formed with a probability of:

Pb(r ) = Φ

(
ln r − µr

σr

)
=

1
2

+
1
2

erf
(

ln r − µr√
2σ 2

r

)
, (3.2)

where Φ denotes the standard normal cumulative distribution function and x ↦→ erf(x) the Gaussian error function.
We refer to Fig. 3 for the illustration of an exemplary vessel, which bifurcates. Moreover, we depict the distribution
of the ratio li/Ri according to (3.1), the radii of its bifurcations, see (3.5), and the probability of the occurrence of
a bifurcation, see (3.2).

If a single vessel is formed at x, the direction of growth dg is based on the TAF concentration:

dg(x) =
∇φTAF (x)

∥∇φTAF (x)∥
+ λg

di

∥di∥
, (3.3)

where ∥ ·∥ denotes the Euclidean norm. The vector di = xi,2 − xi,1 is the orientation of the vessel Λi , and the value
λg ∈ (0, 1] represents a regularization parameter that can be used to circumvent the formation of sharp bendings
and corners. This is necessary if the TAF gradient at x encloses an acute angle with di . The radius Ri ′ of the new
vessel Λi ′ is taken over from Λi i.e. Ri ′ = Ri . Having the radius Ri ′ at hand, we use (3.2) to determine the length
i ′ of Λi ′ . Before Λi ′ is incorporated into the network Λold, we check, whether it intersects another vessel in the

network. If this is the case, Λi ′ is not added to Λold. In order to test whether a new vessel intersects an existing
vessel that is not directly connected, we compute the distance between the centerlines of the new vessel and the
existing vessel. If this distance is smaller than the sum of the radii for any of the existing vessels, the new vessel
is considered too close to existing vessels, and, therefore, the new vessel is not inserted into the network.

In the case of bifurcations, we have to choose the radii, orientations and lengths of the new branches b1 and
b2. The radii of the new branches are computed based on a Murray-type law. It relates the radius Ri of the father
vessel to the radius Ri,b1 of branch b1 and the radius Ri,b2 of branch b2 as follows [61]:

Rγ γ γ
i = Ri,b1
+ Ri,b2

, (3.4)

9
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w
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Fig. 3. Given a vessel with length li and radius Ri , we plot the probability of the occurrence of a bifurcation (red curve in figure (b)), the
ratio of its length over the radius (blue curve in figure (a)), and the distribution of the radii of the sproutings (green curve in figure (c));
we choose Ri = 1.5 · 10−2, Rc = 2−

1
3 Ri according to (3.5), µr = 1, σr = 0.2, Rmin = 9 · 10−3, Rmax = 3.5 · 10−2 according to Table 2,

Rmax = max{Rmax, Ri } = Ri .

here γ denotes the bifurcation exponent. According to [60], γ can vary between 2.0 and 3.5. In addition to (3.4),
e require an additional equation to determine the radii of the branches. Towards this end, it is assumed that Rb1

ollows a truncated Gaussian normal distribution:

Rc = 2−
1
γ Ri , Rbk ∼ N t (R, µ = Rc, σ = Rc/35), k ∈ {1, 2} , (3.5)

which is set to zero outside of the interval [Rmin, Rmax] with Rmax = max{Rmax, Ri }; we refer to Table 2 for a
choice of parameters for Rmin and Rmax. Additionally, the radius of the parent vessel acts as a natural bound for
the radius of its bifurcations.

The selection of Rbk is motivated as follows: Using the radius Ri of Λi , we compute the expected radius Rc
resulting from Murray’s law for a symmetric bifurcation (Rb1 = Rb2 ). Here, Rc is used as a mean value for a
Gaussian normal distribution, with a small standard deviation. This yields bifurcations that are slightly deviating
from a symmetric bifurcation which is in accordance with Murray’s law. Having Rb1 and Rb2 at hand, we compute
the corresponding lengths lb1 and lb2 as in the case of a single vessel.

We refer to Fig. 4 for the distribution of the radii of the bifurcating vessels. We note that the ideal case is a
symmetric bifurcation, that means both radii which correspond to the mean. Further, we also depict two asymmetric
cases where the radii deviate from the mean.

The creation of a bifurcation is accomplished by specifying the orientations of the two branches. At first, we
define the plane in which the bifurcation is contained. The normal vector np of this plane is given by the cross
product of the vessel orientation di and the growth direction dg from the non-bifurcating case:

np(x) =
di × dg  . (3.6)

di × dg

10
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a

Fig. 4. Distribution of the radii of the bifurcating vessels, choosing Ri = 0.015, Rc = 2−
1
3 Ri . Examples of bifurcations with different radii

are given, R = 1.08 · 10−2 (case (a)), R = Rc (case (b)), R = 1.25 · 10−2 (case (c)).

The exact location of the plane is determined such that the vessel Λi is contained in this plane. Further constraints for
the bifurcation configuration are related to the bifurcation angles. In [61,62], it is shown how optimality principles
like minimum work and minimum energy dissipation can be utilized to derive formulas relating the radii of the
branches to the branching angles α

(1)
i and α

(2)
i :

cos
(
α

(1)
i

)
=

R4
i + R4

b1
− R4

b2

2 · R2
i R2

b1

and cos
(
α

(2)
i

)
=

R4
i + R4

b2
− R4

b1

2 · R2
i R2

b2

. (3.7)

The value α
(k)
i denotes the bifurcation angle between branch k ∈ {1, 2} and the father vessel. Rotating the vector

dg at x around the axis defined by np(x) counterclockwise by α
(1)
i + α

(2)
i , we obtain two new growth directions

db1 = dg and db2 . These vectors are used to define the main axes of the two cylinders representing the two branches.
This choice of the growth directions can be considered as a compromise between the optimality principles provided
by [61,62] and the tendency of the network to adapt its growth direction to the nutrient demand of the surrounding
tissue. At the end of the apical growth phase, we obtain a 1D network denoted by Λap.

3.2. Sprouting of new vessels

In the second phase of the angiogenesis process, we examine each vessel or segment Λi ⊂ Λap. As ligands
has been already mentioned, the sprouting of inner vessels is triggered by TAF molecules touching some sensor
ligands in the vessel walls. Therefore, we determine for the middle region of each segment, i.e., Λi (si ) ⊂ Λi , si ∈

(0.25, 0.75) at which place an averaged TAF concentration φTAF attains its maximum φ
(max)
TAF . As in the previous

section φTAF is determined by means of an integral expression:

φTAF (si ) =
1

2π Ri

∫
∂ BRi (si )

φTAF (x) dS, si ∈ (0.25, 0.75).

We consider only the parameters si ∈ (0.25, 0.75), since we want to avoid a sprouting of new vessels at the
boundaries of Λi . Furthermore, boundary edges are not considered, and we demand that the edges should have

minimal length lmin to avoid the formation of tiny vessels. If φ
(max)
TAF is larger than T hTAF , we attach a new vessel

Λi ′ at x. As in the case of apical growth, the local TAF gradient is considered as the preferred growth direction of
the new vessel:

dg(x) =
∇φTAF (x)

.

∥∇φTAF (x)∥

11



M. Fritz, P.K. Jha, T. Köppl et al. Computer Methods in Applied Mechanics and Engineering 384 (2021) 113975
Algorithm 1: Apical growth algorithm

1 Input: Network Λold , Output: New network Λap

2 for each x ∈ ∂Λ ∩ Ω do
3 Compute the TAF concentration at x: φTAF (x);
4 Consider the TAF threshold T hTAF ;
5 if φTAF (x) ≥ T hTAF then
6 Consider the edge Λi containing x i.e. x ∈ ∂Λi ∩ ∂Λ;
7 Λi has the orientation di , the radius Ri

8 Compute the gradient ∇φTAF (x);
9 Compute the new growth direction dg using (3.3);

10 Compute the probability Pb (x) given by (3.2);
11 Form a bifurcation with probability Pb (x);
12 if a bifurcation is formed then
13 Determine the radii of the new branches Rb1 and Rb2 according to (3.4) and (3.5);
14 Compute the bifurcation angles α

(1)
i and α

(2)
i according to (3.7);

15 Rotate dg(x) by the angle α
(1)
i + α

(2)
i counterclockwise around the rotation axis defined by the

vector np(x) (computed using (3.6)) to obtain a second growth direction db2 (x);
16 Determine the ratios rb1 and rb2 according to the probability distribution (3.1);
17 Construct new edges Λb1 and Λb2 having the radii Rb1 and Rb2 ,
18 the lengths lb1 = rb1 · Rb1 and lb2 = rb2 · Rb2 as well as the orientations
19 db1 = dg (x) and db2 ;
20 if Λb1 and Λb2 are not intersecting and Rb1 , Rb2 ∈

[
Rmin, Rmax

]
then

21 Add Λb1 and Λb2 to Λi at the node x;
22 end
23 else
24 Continue;
25 end
26 end
27 else
28 The radius for the new edge is set to Ri ;
29 Determine the ratio ri according to the probability distribution (3.1);
30 Construct a new edge Λi ′ having the radius Ri ,
31 the length li ′ = ri · Ri and the orientation dg (x);
32 Check whether Λi ′ intersects;
33 if Λi ′ is not intersecting and Ri ∈

[
Rmin, Rmax

]
then

34 Add Λi ′ to Λi at the node x;
35 end
36 else
37 Continue;
38 end
39 end
40 end
41 else
42 Continue;
43 end
44 end
12
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n order to prevent Λi ′ from growing in the direction of Λi , we demand that dg draws an angle of at least 10
180π .

The new radius Ri ′ is computed as follows:

R̃i = ζ Ri , R̃i ′ = (R̃i − Ri )
1
γ = (ζ − 1)

1
γ Ri , Ri ′ =

{
Ri ′ ∼ U(1.25 · Rmin, R̃i ′ ) if 1.25 · Rmin < R̃i ′

Rmin otherwise.

ζ > 1 is a fixed parameter, Rmin denotes the minimal radius of a blood vessel, and U stands for the uniform
distribution, i.e., new segment radius Ri ′ is chosen from the interval [Rmin, R̃i ′ ] based on a uniform distribution.
For a given radius R̃i ′ , the new length li ′ of Λi ′ is determined by means of (3.1).

Finally, three new vessels Λi1 , Λi2 and Λi ′ are added to the network Λap. As in the case of apical growth, we test
whether a new vessel intersects an existing vessel, before we incorporate Λi ′ into Λap. In addition, we check whether
a terminal vessel, i.e., a vessel that is part of ∂Λap can be linked to another vessel. For this purpose, the distance
of the point xb ∈ ∂Λap ∪ ∂Λi to its neighboring network nodes that are not directly linked to xb is computed. If
he distance is below a certain threshold distlink, the corresponding network node is considered as a candidate to be
inked with xb. If xb is part of an artery or the high pressure region of Λap, we link it preferably with a candidate
t minimal distance and whose pressure is in the low pressure region (venous part). If xb is part of a vein, the roles
re switched.

.3. Adaption of the vessel radii

In the final phase of the angiogenesis step, we iterate over all the vessels Λi ⊂ Λsp and compute for each vessel
he wall shear stress τw by:

τw,i =
4.0 µbl

π R3
i

|Qi | , Qi = −Kv,i
R2

i π∆pv,i

li
,

where ∆pv,i is the pressure drop along Λi . By means of the 1D wall shear stress, the wall shear stress stimulus for
the vessel adaption is given by [13]:

SWSS,i = ln(τw,i + τref). (3.8)

Here, τref is a constant that is included to avoid a singular behavior at lower wall shear stresses [10]. Following the
model for radius adaptation in [63], the change in radius ∆Ri over a time step ∆t is assumed to be proportional
to the stimulus SWSS,i and current radius Ri :

∆Ri =
(
kWSS · SWSS,i − ks

)
· ∆t · Ri , (3.9)

where ks is a constant that controls the natural shrinking tendency of the blood vessel and kWSS a proportionality
constant that controls the effect of stimulus SWSS,i . Once we have ∆Ri , we can compute the updated radius of
vessels using Rnew,i = Ri + ∆Ri . If

Rnew,i ∈ [Rmin, 1.25 · Ri ] ,

where Rmin is some fixed constant, we update the vessel radius of Λi . Otherwise, if Ri < Rmin and ∂Λi ∪∂Λsp ̸= ∅,
the vessel is removed from the network. Finally, after following the procedure discussed in this section, we obtain
a new network Λnew.

4. Numerical discretization

With our mathematical models for tumor growth, blood flow and nutrient transport as well as angiogenesis
processes presented in previous sections, we now turn our attention to numerical solution strategies. Towards this
end, let us consider a time step n given by the interval [tn, tn+1], with ∆t = tn+1 − tn . At the beginning of a time
step n, we decide whether an angiogenesis process has to be simulated or not. As examples of relevant simulations,
we consider an angiogenesis process after each third time step. If angiogenesis has to be taken into account, we
follow the steps described in Section 3. Given the 1D network Λ at the time point tn , we first apply the algorithm
for the apical growth. Afterwards, the sprouting of new vessels and the adaption of the vessel radii is simulated.

Finally, we obtain a new network Λnew for the new time point tn+1. If the simulation of angiogenesis is omitted

13
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Fig. 5. Simulation steps within a single time step.

in the respective time step n, Λ is directly used for the simulation of the tumor growth as well as blood flow and
utrient transport, see Fig. 5.

For the time discretization of the 3D model equations in Section 2, the semi-implicit Euler method is used i.e. we
eep the linear terms implicit and the nonlinear terms explicit with respect to time. Discretizing the model equations
n space, standard conforming trilinear Q1 finite elements are employed for the partial differential equations
overning the tumor growth (2.4), whereas the PDEs for pressure (p) and nutrient transport (φσ ) are solved by
eans of cell centered finite volume methods. The computational mesh is given by a union of cubes having an

dge length of h3D .
We use finite elements to approximate the higher-order Cahn–Hilliard type equations as well advection–reaction–

iffusion equations corresponding to the species φT AF , φEC M , φM DE in (2.4). In order to ensure mass conservation
or both flow and nutrient transport in the interstitial domain, finite volume schemes are taken into account, since
hey are locally mass conservative.

In order to solve the 3D–1D coupled system, such as pressure (pv, p), the iterative Block-Gauss–Seidel method
is used, i.e., in each iteration, we first solve the equation system for the 1D system. Then the updated 1D solution
is used to solve the equation system derived from the 3D problem. We stop the iteration when the change in the
current and previous iteration solution is within a small tolerance. At each time step, we first solve the (pv, p)
coupled system. Afterwards the (φv, φσ ) coupled system is solved. Next, we solve the remaining equations in the
3D system. This is summarized in Algorithm 2. In the remainder of this section, the discretizations of the 1D and
3D systems are outlined.

4.1. VGM discretization of the 1D PDEs

It remains to specify the numerical solution techniques for the 1D network equations. The time integration is
based on the implicit Euler method. For the spatial discretization of the 1D equations, the Vascular Graph Method
(VGM) is considered. This method corresponds to a node centered finite volume method [64,65]. We then briefly
describe this numerical method as well as the discretization of the terms arising in the context of the 3D–1D
coupling. We restrict ourselves to the pressure equations.

As mentioned in Section 2, the 1D network is given by a graph-like structure, consisting of edges Λi ⊂ Λ and
network nodes x ∈ Λ. In a first step, we assign to each network node x an unknown for the pressure that is denoted
i i

14
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Fig. 6. Notation for the Vascular Graph Method.

by pv,i . Let us assume that the edges containing xi are given by Λi1 , . . . ,ΛiN and its midpoints by mi1 , . . . , miN ,
ee Fig. 6.

On each edge, Λk ∈
{
Λi1 , . . . ,ΛiN

}
, we consider the following PDE for the pressure; see also (2.7). For

onvenience, the curve parameter is simply denoted by s.

−R2
k π ∂s(Kv,k ∂s pv) = −2π Rk L p(pv − p).

Next, we establish for the node xi a mass balance equation taking the fluxes across the cylinders Z il into account.
Z il is a cylinder having the edge Λil as a rotation axis and the radius Ril . Furthermore its top and bottom facets
are located at mil and xi , respectively (see Fig. 6). The corresponding curve parameters are denoted by s(xi ) and
s(xil ), l ∈ {1, . . . , N }. Accordingly, the mass balance equation reads as follows:

−

N∑
l=1

∫ s(mil )

s(xi )
R2

il π ∂s(Kv,il ∂s pv) ds = −2π L p

N∑
l=1

∫ s(mil )

s(xi )
Ril (pv − p) ds.

Integration yields:

−

N∑
l=1

R2
il π Kv,il ∂s pv|s(mil ) +

N∑
l=1

R2
il π Kv,il ∂s pv|s(xi ) = −2π L p

n∑
l=1

∫ s(mil )

s(xi )
Ril (pv − p) ds.

Approximating the derivatives by central finite differences and using the mass conservation equation (see
ection 2.4):

N∑
l=1

R2
il π Kv,il ∂s pv|s(xi ) = 0,

at an inner node xi , it follows that

N∑
l=1

R2
il π Kv,il

pv,i − pv,il

lil
= −2π L p

N∑
l=1

∫ s(mil )

s(xi )
Ril (pv − p) ds,

where lil denotes the length of the edge Λil . Denoting the mantle surface of Z il by Sil , we have:

N∑ R2
il
π Kv,il

l
(pv,i − pv,il ) = −L p

N∑ ⏐⏐Sil

⏐⏐ pv,i + L p

N∑ ∫
p dS.
l=1 il l=1 l=1 Sil

15
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Fig. 7. Typical discretization of the cylinder surface (left). Cross section through a mesh composed of finite volume cells CVk and a cylinder
ith the mantle surface Sil . Sil is discretized by Ns nodes, which are contained in different finite volume cells. Nodes belonging to different

ells are colored differently. The number of nodes contained in CVk is denoted by Nkil . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Computing the integrals
∫

Sil
p dS, we introduce the decomposition of Ω into M finite volume cells CV k : Ω =

M
k=1 CV k . The pressure unknown assigned to CV k is given by pk . Using this notation, one obtains:∫

Sil

p dS =

∑
CV k∩Sil ̸=∅

∫
CV k∩Sil

p dS ≈
⏐⏐Sil

⏐⏐ ∑
CV k∩Sil ̸=∅

⏐⏐CV k ∩ Sil

⏐⏐⏐⏐Sil

⏐⏐  
=:wkil

pk =
⏐⏐Sil

⏐⏐ ∑
CV k∩Sil ̸=∅

wkil pk .

In order to estimate the weights wkil we discretize the mantle surface Sil by Ns nodes. For our simulations, we used
Ns = 400 nodes. Sil intersects some finite volume cells CVk . The number of nodes contained in CVk is denoted by
Nkil . Using these definitions, the weights wkil are computed as follows: wkil = Nkil /Ns . As an example, consider
ig. 7, where we show the discretization of the surface of a cylinder. We note that one has to guarantee that the
elation

∑
CV k∩Sil ̸=∅

wkil = 1 holds. Otherwise, a consistent mass exchange between the vascular system and the
issue could not be enforced. All in all, we obtain a linear system of equations for computing the pressure values.
n closer examination, it can be noted that the corresponding matrix is composed of four blocks, i.e., two coupling
locks as well as a block for the 1D diffusion term and the 3D diffusion term. As said earlier, at each time step, we
ecouple the 1D and 3D pressure equations and use a Block-Gauss–Seidel iteration to solve the two systems until
he 3D pressure is converged. The discretization of the nutrient equation is exerted in a similar manner, where the

ain difference consists in adding an upwinding procedure for the convective term. At each time step, the nutrient
quations are also solved using a Block-Gauss–Seidel iteration.

.1.1. Initial and boundary conditions for the 1D PDEs
Since we use a transient PDE to simulate the transport of nutrients, we require an initial condition for the variable

v . In doing so, a threshold RT for the radii is introduced in order to distinguish between arteries and veins. If the
adius of a certain vessel is below RT , the vessel is considered as an artery and otherwise as a vein. In case of an
rtery, we set φv(t = 0) = 1 and in case of a vein φv(t = 0) = 0 is used. When the network starts to grow, initial
alues for the newly created vessels have to be provided. If a new vessel is created due to sprouting growth, we
onsider the vessel or edge to which the new vessel is attached. At the point of the given vessel, where the new
16
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essel or edge is added, φv is interpolated linearly. For this purpose the two values of φv located at the nodes of
the existing vessel are used. The interpolated value is assigned to both nodes of the newly created vessel.

When apical growth takes place, a new vessel is added to x ∈ ∂Λ. In this case, we consider φv(x, t) for a time
oint t and assign it to the newly created node, since we assume that no flow boundary conditions are enforced.
ith respect to the boundary conditions for the 1D pressure PDE, the following distinction of cases is made:

• Dirichlet boundary for pv if x ∈ ∂Λ ∩ ∂Ω . In this case, we set: pv(x) = pv,D(x), where pv,D is a given
Dirichlet value at x. Numerically, we enforce this boundary condition by setting in the corresponding line of
the matrix all entries to zero except for the entry on the diagonal which is fixed to the value 1. Additionally, the
corresponding component of the right hand side vector contains the Dirichlet value pD . Let us assume that y is
the neighbor of x on the edge Λ1. The other edges adjacent to y are denoted by Λ2, . . . ,ΛN . Then the balance
equation for y has to be adapted as follows to account for the Dirichlet boundary condition pv,D:

R2
1π Kv,1

l1
(pv ( y) − pv,D) +

N∑
j=2

R2
j π Kv, j

l j
(pv ( y) − pv, j )

= −L p

⏐⏐⏐S̃1

⏐⏐⏐ pv ( y) + L p

∑
CV k∩S̃1 ̸=∅

wk1 pk − L p

N∑
j=2

⏐⏐S j
⏐⏐ pv ( y) + L p

⏐⏐S j
⏐⏐ ∑

CV k∩S j ̸=∅, j>1

wk j pk,

where S̃1 is the mantle surface of the cylinder covering the whole edge Λ1.
• Homogeneous Neumann boundary for pv if x ∈ ∂Λ∩Ω . Let x ∈ ∂Λi∩∂Λ∩Ω , then we set −R2

i π Kv,i∂s pv

⏐⏐
x =

0, resulting in the following discretization:

R2
i π Kv,i

pv(x) − pv( y)
li

= −L p
⏐⏐Si1

⏐⏐ pv,i + L p
⏐⏐Si1

⏐⏐ ∑
CV k∩Si1 ̸=∅

wkil pk,

where y ∈ ∂Λi ∩ Λ and li is the length of the edge Λi .

ummarizing, we consider for the pressure in the network Dirichlet boundaries at the boundary of the 3D domain
and homogeneous Neumann boundary conditions in the inner part of Ω . For the nutrients, the implementation

f boundary conditions is more challenging, since an upwinding procedure has to be taken into account.

• Dirichlet boundary for φv if x ∈ ∂Λi ∩ ∂Λ ∩ ∂Ω and

vv(x) ≈ −Kv,i
pv ( y) − pv,D(x)

li
> 0.

In this case, we set: φv(x, t) = φv,D(x), where φv,D is a given Dirichlet value at x. The numerical implementation
can be exerted analogously to the case of the pressure pv .

• Homogeneous Neumann boundary for φv if x ∈ ∂Λ ∩ Ω . Let x ∈ ∂Λi ∩ ∂Λ ∩ Ω and we set

(vvφv − Dv∂si φv)
⏐⏐

x = 0,

resulting in the following discretization:

li

2
φv(x, t + ∆t) − φv(x, t)

∆t
+ vvφv|mi

− Dv

φv( y, t + ∆t) − φv(x, t + ∆t)
li

= −2π Ri

[
(1 − rσ )

∫ s(mi )

s(x)
Jpv(p, pv) · φv

σ (s, t + ∆t) ds + Lσ

∫ s(mi )

s(x)
φv(s, t + ∆t) − φσ (s, t + ∆t) ds

]
,

where y ∈ ∂Λi ∩ Λ. The integrals modeling the exchange terms are discretized as in the case of the pressure
equations.

• Upwinding boundary for φv if x ∈ ∂Λ ∩ ∂Λi ∩ ∂Ω and

vv(mi ) ≈ −Kv,i
pv ( y) − pv (x)

≤ 0.

li

17
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Here, we obtain the following semi-discrete equation:
li

2
φv(x, t + ∆t) − φv(x, t)

∆t
+ vv|mi φv( y, t + ∆t) − vv|mi φv(x, t + ∆t)

= −2π Ri

[
(1 − rσ )

∫ s(mi )

s(x)
Jpv(p, pv) · φv

σ (s, t + ∆t) ds + Lσ

∫ s(mi )

s(x)
φv(s, t + ∆t) − φσ (s, t + ∆t) ds

]
,

where y ∈ ∂Λi ∩ Λ.

.2. Discretization of the 3D PDEs

Suppose that φαn , µαn , pn, pvn , vn denote the various fields at time tn . Let Vh be a subspace of H 1(Ω ,R)
onsisting of continuous piecewise trilinear functions on a uniform mesh Ωh . We consider φαn ∈ Vh for α ∈

P, H, N , T AF, EC M, M DE}, µPn , µHn ∈ Vh , and vh ∈ [Vh]3. The test functions are denoted by φ̃ ∈ Vh for
pecies in Vh , µ̃ ∈ Vh for chemical potentials µP , µH , and ṽ ∈ [Vh]3 for velocity.

Given a time step n and solutions φαn , µαn , pn, pvn , vn , we are interested in the solution at the next time step.
or the 3D–1D coupled pressure (pvn+1 , pn+1), as mentioned earlier, we utilize a block Gauss–Seidel iteration,
here the discretization of the 1D equation is discussed in Section 4.1 and discretization of the 3D equation using
nite-volume scheme is provided in (4.3). Similarly, (φvn+1 , φσn+1 ) is solved using a block Gauss–Seidel iteration
ith the discretization of the 1D equation along the lines of the discretization of the 1D pressure equation and
iscretization of the 3D equation provided in (4.4). We then solve the proliferative, hypoxic, necrotic, MDE, ECM,
nd TAF systems sequentially. Once we have pressure pn+1, we compute the velocity vn+1 ∈ [Vh]3 using the weak
orm:

(vn+1, ṽ) = (−K (∇ pn+1 − Spn ), ṽ), ∀ṽ ∈ [Vh]3, (4.1)

here Spn = Sp(φn, µPn , µHn ), see (2.5). For the advection terms, using the fact that ∇ p · n = 0 on ∂Ω and so
n+1 · n = 0 on ∂Ω , we can write(

∇ · (φαvn+1), φ̃
)

= −

(
φαvn+1, ∇φ̃

)
, ∀φ̃ ∈ Vh, ∀α ∈ {P, H, T AF, M DE}. (4.2)

n what follows, we consider the expression on the right hand side in above equation for the advection terms.
For fields φa , a ∈ {P, H, N , σ, T AF, EC M, M DE}, and chemical potentials µP , µH , we assume homogeneous

eumann boundary condition on ∂Ω . Next, we describe the discretization of the scalar fields in the 3D model.

• Pressure. Let CV ∈ Ωh denote the typical finite volume cell and σ ∈ ∂CV face of a cell CV . Let (pk
vn+1

, pk
n+1)

denote the pressures at kth iteration and time tn+1. Suppose we have solved for pk+1
vn+1

following Section 4.1. To
solve pk+1

n+1, we consider, for all CV ∈ Ωh ,

−

∑
σ∈∂CV

∫
σ

K∇ pk+1
n+1 · n dS = −

∑
σ∈∂CV

∫
σ

K Spn · n dS +

∫
Γ∩CV

Jpv(pk+1
n+1,ΠΓ pk+1

vn+1
) dS

= −

∑
σ∈∂CV

∫
σ

K Spn · n dS +

N∑
i=1

∫
Γi ∩CV

Jpv(pk+1
n+1,ΠΓi pk+1

vn+1
) dS. (4.3)

Above follows by the integration of the pressure equation in (2.4) over CV and using the divergence theorem.
Here Jpv(p, pv) = L p(pv − p), Γ = ∪

N
i=1Γi is the total vascular surface, and ΠΓi (pv) is the projection of the

1D pressure defined on the centerline Λi onto the surface of the cylinder, Γi .
• Nutrients. Suppose we have solved for φk+1

vn+1
. To solve φk+1

σn+1
, we consider, for all CV ,∫

CV

φk+1
σn+1

− φσn

∆t
dV +

∑
σ∈∂CV

∫
σ

φk+1
σn+1

v̂n+1 · n dS −

∑
σ∈∂CV

∫
σ

mσ (φn)
(

Dσ∇φk+1
σn+1

)
· n dS

+

∫
CV

λ
pro
P φPn φ

k+1
σn+1

dV +

∫
CV

λ
pro
H φHn φ

k+1
σn+1

dV

+

∫
λ

pro
EC M (1 − φECM n)H(φECM n − φ

pro
ECM )φk+1

σ dV

CV

n+1

18
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=

∫
CV

λ
deg
P φPn + λ

deg
H φHn dV +

∫
CV

λ
deg
ECMφECM nφMDE n dV

−

∑
σ∈∂CV

∫
σ

mσ (φn)χc∇
(
φPn + φHn

)
· n dS +

N∑
i=1

∫
Γi ∩CV

Jσv(φk+1
σn+1

, pk+1
n+1,ΠΓi φ

k+1
vn+1

,ΠΓi pk+1
vn+1

) dS, (4.4)

where Jσv is given by (2.6). Noting that the velocity is

v̂n+1 = −K∇ pn+1 + K Spn ,

we divide the advection term, for σ ∈ ∂CV , into two parts:∫
σ

φk+1
σn+1

v̂n+1 · n dS = −K
∫

σ

φk+1
σn+1

∇ pn+1 · n dS + K
∫

σ

φk+1
σn+1

Spn · n dS. (4.5)

For the first term we apply the upwinding scheme. For the second term, we perform quadrature approximation
to compute the integral over the face σ .

• Proliferative. For a general double-well potential Ψ (φP , φH , φN ) =
∑

a∈{T,P,H}
CΨa φ

2
a (1 − φa)2, we consider

the convex–concave splitting, see [66], as follows

Ψ (φP , φH , φN ) =

∑
a∈{T,P,H}

3
2

CΨa φ
2
a +

∑
a∈{T,P,H}

CΨa (φ4
a − 2φ3

a −
1
2
φ2

a ). (4.6)

This results in

∂φPΨ (φP , φH , φN ) =

∑
a∈{T,P}

3CΨa φa +

∑
a∈{T,P}

CΨa φa(4φ2
a − 6φa − 1). (4.7)

The expression for ∂φH Ψ can be derived analogously. In our implementation, φP , φH , φN are the main state
variables and φT is computed using φT = φP + φH + φN . Let the mobility m̄ Pn at the current step be given by

m̄ Pn = MP
[
(φPn )+(1 − φTn )+

]2
, (4.8)

where for a field f , ( f )+ is the projection onto [0, 1] given by

( f )+ =

⎧⎪⎨⎪⎩
f if f ∈ [0, 1],
0 if f ≤ 0,

1 if f ≥ 1.

(4.9)

We solve for φPn+1 , µPn+1 using the weak forms below(
φPn+1 − φPn

∆t
, φ̃

)
−

(
φPn+1vn+1, ∇φ̃

)
+

(
m̄ Pn ∇µPn+1 , ∇φ̃

)
−

(
λ

pro
P φσn+1 (1 − φTn )+φPn+1 , φ̃

)
+

(
λ

deg
P φPn+1 , φ̃

)
=

(
λH PH(φσn+1 − σH P )

(
φHn

)+
, φ̃

)
−

(
λPHH(σPH − φσn+1 )

(
φPn

)+
, φ̃

)
+

1
∆t

(
G Pn

∫ tn+1

tn
dWP , φ̃

)
(4.10)

and (
µPn+1 , µ̃

)
−

(
3(CΨT + CΨP )φPn+1 , µ̃

)
−

(
ϵ2

P∇φPn+1 , ∇µ̃
)

=
(
CΨT φTn (4φ2

Tn
− 6φTn − 1), µ̃

)
+

(
CΨP φPn (4φ2

Pn
− 6φPn − 1), µ̃

)
+

(
3CΨT (φHn + φNn ), µ̃

)
−

(
χcφσn+1 + χhφECM n, µ̃

)
, (4.11)

where (·)+ is the projection to [0, 1] defined in (4.9), G Pn = G P (φPn , φHn , φNn ) is given by (2.3), and WP is
the cylindrical Wiener process. We discuss the computation of stochastic term in more detail in Section 4.2.1.

• Hypoxic. Let the mobility m̄ Hn be given by[
+ +

]2
m̄ Hn = MH (φHn ) (1 − φTn ) . (4.12)
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To solve for φHn+1 , µHn+1 , we consider

(
φHn+1 − φHn

∆t
, φ̃

)
−

(
φHn+1vn+1, ∇φ̃

)
+

(
m̄ Hn ∇µHn+1 , ∇φ̃

)
−

(
λ

pro
H φσn+1 (1 − φTn )+φHn+1 , φ̃

)
+

(
λ

deg
H φHn+1 , φ̃

)
=

(
λP HH(σP H − φσn+1 )

(
φPn

)+
, φ̃

)
−

(
λHPH(φσn+1 − σHP )

(
φHn

)+
, φ̃

)
−

(
λHNH(σHN − φσn+1 )

(
φHn

)+
, φ̃

)
+

1
∆t

(
G Hn

∫ tn+1

tn
dWH , φ̃

)
(4.13)

and

(
µHn+1 , µ̃

)
−

(
3(CΨT + CΨH )φHn+1 , µ̃

)
−

(
ϵ2

H∇φHn+1 , ∇µ̃
)

=
(
CΨT φTn (4φ2

Tn
− 6φTn − 1), µ̃

)
+

(
CΨH φHn (4φ2

Hn
− 6φHn − 1), µ̃

)
+

(
3CΨT (φPn + φNn ), µ̃

)
−

(
χcφσn+1 + χhφECM n, µ̃

)
, (4.14)

where G Hn = G H (φPn , φHn , φNn ) is given by (2.3) and WH is the cylindrical Wiener process.

• Necrotic.(
φNn+1 − φNn

∆t
, φ̃

)
=

(
λH NH(σH N − φσn+1 )

(
φHn

)+
, φ̃

)
. (4.15)

• MDE.(
φMDE n+1 − φMDE n

∆t
, φ̃

)
−

(
φMDE n+1vn+1, ∇φ̃

)
+

(
mMDE (φn)DMDE∇φMDE n+1, ∇φ̃

)
+

(
λ

deg
MDEφMDE n+1, φ̃

)
+

(
λ

pro
MDE (φPn + φHn )φECM n

σHP

σHP + φσn+1

φMDE n+1, φ̃

)
=

(
λ

pro
MDE (φPn + φHn )φECM n

σHP

σHP + φσn+1

, φ̃

)
−

(
λ

deg
EC MφECM nφMDE n, φ̃

)
. (4.16)

• ECM.(
φECM n+1 − φECM n

∆t
, φ̃

)
=

(
λ

pro
EC Mφσn+1H(φECM n − φ

pro
ECM )(1 − φECM n), φ̃

)
−

(
λ

deg
EC MφMDE n.φECM n, φ̃

)
(4.17)

• TAF. (
φTAF n+1 − φTAF n

∆t
, φ̃

)
−

(
φTAF n+1vn+1, ∇φ̃

)
+

(
DT AF∇φTAF n+1, ∇φ̃

)
+

(
λ

pro
TAFφHn+1φTAF n+1H(φHn+1 − φHP ), φ̃

)
=

(
λ

pro
TAFφHn+1H(φHn+1 − φHP ), φ̃

)
−

(
λ

deg
TAFφTAFn , φ̃

)
. (4.18)
20
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he steps followed in solving the coupled system of equations including the angiogenesis step are summarized in
lgorithm 2.

Algorithm 2: The 3D-1D tumor growth model solver with angiogenesis step

1 Input:Model parameters, φα0 , v0,∆t, T, TOL for α ∈ A := {P, H, N , σ, TAF, MDE, ECM}

2 Output: φαn , µPn , µHn , pn, vn, pvn , φσvb for all n
3 n = 0, t = 0
4 while t ≤ T do
5 φαn = φαn+1 ∀α ∈ A, µPn = µPn+1 , µHn = µHn+1 , pvn = pvn+1 , φvn = φvn+1
6 if apply angiogenesis(n) == True then
7 apply angiogenesis model described in Section 3
8 update 1D systems if the network is changed
9 end

10 solve coupled linear system (pvn+1 , pn+1) using block Gauss-Seidel iteration and Section 4.1
11 solve coupled linear system (φvn+1 , φσn+1 ) using block Gauss-Seidel iteration and Section 4.1
12 solve velocity vn+1 using (4.1)
13 solve

(
φPn+1 , µPn+1

)
using the semi-implicit scheme in (4.10) and (4.11)

14 solve
(
φHn+1 , µHn+1

)
using the semi-implicit scheme in (4.13) and (4.14)

15 solve φNn+1 using the semi-implicit scheme in (4.15)
16 solve φMDE n+1 using the semi-implicit scheme in (4.16)
17 solve φECM n+1 using the semi-implicit scheme in (4.17)
18 solve φTAF n+1 using the semi-implicit scheme in (4.18)
19 n ↦→ n + 1, t ↦→ t + ∆t
20 end

Remark. If we ignore the advection and reaction terms of the given system and set χc = 0 we can show that our
algorithm is unconditionally gradient stable.

This is due to the fact that if we freeze the field φHn , in both the convex and concave part of our double-well
otential and solve Eq. (4.10) for φPn+1 , then due to the given convex–concave splitting we get

E(φσn+1 , φPn+1 , φHn , φNn , φM DEn , φEC Mn , φT AFn ) − E(φσn+1 , φPn , φHn , φNn , φM DEn , φEC Mn , φT AFn ) ≤ 0.

imilarly, if we now freeze φPn+1 in both parts of the potential and solve (4.13) for φHn+1 we get from the
nconditional gradient stability of the sub scheme that

E(φσn+1 , φPn+1 , φHn+1 , φNn , φM DEn , φEC Mn , φT AFn ) − E(φσn+1 , φPn+1 , φHn , φNn , φM DEn , φEC Mn , φT AFn ) ≤ 0.

his observation extends to arbitrarily large systems of Cahn–Hilliard equations and since Eqs. (4.4), (4.16), (4.18)
an be considered as very simple Cahn–Hilliard equations it also extends to them. Finally we note that φNn+1 = φNn

nd φEC Mn+1 = φEC Mn holds trivially without source terms. Hence, using a telescope sum over all the energy
ecrements due to solving Eqs. (4.4), (4.13), (4.10), (4.15)–(4.18) we get

E(φn+1) − E(φn) ≤ 0

ndependent of our time-step size, which provides a strong motivation for the stability of our algorithm.
With the stochastic terms we can generate tumor mass and hence E does not have to decrease. And even though

he reaction terms all add up to zero, this does not necessarily mean that E has to decrease, since they are not part of
ur gradient-flow. For arbitrary initial states we therefore cannot expect that d

dt E ≤ 0 holds even for our continuous
ystem.

.2.1. Stochastic component of the system
Generally, the cylindrical Wiener processes Wα , α ∈ {P, H}, on L2(Ω ) with Ω = (0, 2)3 can be written as

Wα(t)(x) =

∞∑
i, j,k=1

ηα
i jk(t) cos(iπx1/L) cos( jπx2/L) cos(kπx3/L)  ,
=:ei jk
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here x = (x1, x2, x3), L is the edge length of the cubed domain Ω , {ei jk} form the orthonormal basis of L2(Ω ), and
ηα

i jk}i, j,k∈N is a family of real-valued, independent, and identically distributed Brownian motions. Following [54,67],
e approximate the term involving the Wiener process in the fully discretized system as follows

1
∆t

(∫ tn+1

tn
dWα(t), ξ

)
L2

≈
1
∆t

∑
i, j,k,

i+ j+k<Iα

ηα
i jk(ei jk, ξ )L2 , (4.19)

where ξ ∈ Vh is a test function, ηα
i jk ∼ N (0,∆t) are independent Gaussians, and Iα controls the number of basis

unctions.

. Numerical simulations

In this section, we apply the models described in Sections 2 and 3 and use the numerical discretization steps
iscussed in Section 4. We consider examples that showcase the effects of angiogenesis on the tumor growth. For
his purpose, the model parameters and the basic setting for our simulations are introduced in Section 5.1. In the base
etting, we consider two vessels, one representing an artery and the other a vein, and introduce an initially spherical
umor core. Based on this setting, tumor growth is simulated first without considering angiogenesis, i.e., the growth
lgorithm from Section 3 is not applied. Afterwards, we repeat the same simulation including the angiogenesis
ffects and study the differences between the corresponding simulations results.

We then consider a scenario consisting of a tumor core surrounded by a small capillary network. We obtain the
etwork from source.1 First, we rescale the network so that it fits into the domain Ω = (0, 2)3. The vessel radii
re rescaled such that the maximal and minimal vessel radius is given non-dimensionally by 0.05606 and 0.025,
espectively. In all of the simulations, we consider the double-well potential of the form:

Ψ = CΨT φ2
T (1 − φT )2,

here CΨT is a constant. Since the model involves stochastic PDEs as well as stochastic angiogenesis, we employ
onte-Carlo approximation based on samples of the probability distributions characterizing the white noise terms,

sing 10 samples for the case without angiogenesis and 50 samples for the case with angiogenesis. We use the
amples to report statistics of quantity of interests such as total tumor volume, vessel volume density, etc.

.1. Setup and model parameters for the two vessel problem

As a computational domain Ω , we choose a cube, Ω = (0, 2)3. Within Ω two different vessels are introduced:
n artery and a vein; see Fig. 8. The radius of the vein Rv is given by Rv = 0.0625, and the radius of the artery Ra

s set to Ra = 0.047. The centerlines of both vessels are given by straight lines. In case of the artery, the centerline
tarts at (0.1875, 0.1875, 0) and ends at (0.1875, 0.1875, 2), whereas the vein starts at (1.8125, 1.8125, 0) and ends
t (1.8125, 1.8125, 2).

At the boundaries of the vessels, we choose Dirichlet boundaries for the pressure, see also Fig. 8. These boundary
onditions imply that the artery provides nutrients for the tissue block Ω , while the vein will take up nutrients. For
he nutrients in the blood vessels mixed boundary conditions are considered, as depicted in Fig. 8.

As initial conditions for φv , we choose φv = 1 in the artery and φv = 0 in the vein. The initial value for the
utrient variable φσ in the tissue matrix is given by φσ = 0.5. In order to define the initial conditions for the tumor,
e consider a ball BT of radius rc = 0.3 around the center xc = (1.0, 0.8, 1.0). Within BT , the total tumor volume

raction φT smoothly decays from 1 in the center to 0 on the boundary of the ball:

φT (x, t = 0) =

⎧⎨⎩ exp
(

1 −
1

1 − (|x − xc|/rc)4

)
, if |x − xc| < rc,

0, otherwise.
(5.1)

Thereby, the necrotic and hypoxic volume fractions, φN and φH , are set initially to zero. In the other parts of the
domain, all the volume fractions for the tumor species are set to 0 at t = 0. In Table 1, the parameters for the
model equations in Section 2 are listed and Table 2 contains the parameters for the growth algorithm described in

1 https://physiology.arizona.edu/sites/default/files/brain99.txt
22

https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
https://physiology.arizona.edu/sites/default/files/brain99.txt
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Fig. 8. Initial setting with boundary conditions for a first numerical experiment. Pressure at top plane (z = 0) and bottom (z = 2) ends of
the artery are 3000 and 2000 respectively. Similarly, the pressure at top and bottom ends of the vein are fixed at 1100 and 1600, respectively.
The high pressure end of the artery is the inlet end, and there we assign the nutrients value to 1. The high pressure end of the vein is
also the inlet, and here we assign the nutrients value to 0. At the remaining ends, we apply the upwinding scheme for solving the nutrient
equation.

Section 3 as well as the discretization parameters. In particular, the parameters for the stochastic distributions are
listed, which determine the radii and vessel lengths, the probability of bifurcations, and the sprouting probability
of new vessels.

5.2. Robustness of the 3D–1D solver

To ascertain the accuracy and robustness of the proposed solver, we performed several studies where we changed
mesh size and time steps and found that the solver is robust and the size of time step and mesh size employed in
the studies in sections below balance the computational cost and numerical accuracy pretty well. To strengthen the
claims, we consider a two-vessel setup described above without the stochasticity and network growth. We run the
simulations using four different time steps ∆ti = 0.01/2i−1, i = 1, 2, 3, 4, and compute the rate of convergence
of quantity of interests such as L2 or L1 norms of tumor species and nutrients. In Fig. 9, we plot the L2 norm of
tumor species and nutrients for different time steps. We see that the difference between the curves for different ∆t
is very small. Let Qi (t) denote the quantity of interest (L2 norm of species) at time t for ∆ti . We can approximately
compute the rate of convergence of Q using the formula:

r (t) =
log(|Q1(t) − Q4(t)|) − log(|Q2(t) − Q4(t)|)

log(∆t1) − log(∆t2)
.

For Q(t) = ∥φT (t)∥L2 , we found r (1) = 0.894, r (2) = 1.03, r (3) = 1.025, r (4) = 0.531, r (5) = 1.692.
We also remark that the proposed solver, see Algorithm 2, does not involve nonlinear iterations to compute the

P , φH , φN , φMDE , φECM solutions at current time step. We compared the results of current solver and the solver
nvolving nonlinear iterations and observed that the solver with nonlinear iterations still required us to consider
mall time steps. Also, the error in solution from two solvers decreases with mesh refinement and smaller time
teps. These observations motivated us to use the proposed solver for all numerical tests in the sections below.

.3. Tumor growth without angiogenesis

The simulation results for tumor growth without angiogenesis are summarized in Fig. 10. For t = 8, the tumor
ell distribution within the plane perpendicular to the z-axis at z = 1.0 is shown. In three subfigures, the volume
raction variables φ = φ + φ + φ , φ , as well as the nutrients φ are presented. It can be observed that the
T P H N N σ
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Table 1
List of parameters and their values for the numerical simulations. Unlisted parameters are set to zero. φω

α , ωα ,
and Iα are parameters related to Wiener process, see (2.3) and (4.19).

Parameter Value Parameter Value Parameter Value

λ
pro
P 5 λ

pro
H 0.5 λ

deg
P , λ

deg
H 0.005

λ
pro
ECM 0.01 λ

pro
MDE , λ

deg
MDE 1 λ

deg
ECM 5

λPH 1 λHP 1 λHN 1
σPH 0.55 σHP 0.65 σHN 0.44
MP 50 MH 25 CΨT 0.03
εP 0.005 εH 0.005 λ

pro
TAF 10

DTAF 0.5 MTAF 1 L p 10−7

Dσ 3 Mσ 1 K 10−9

DMDE 0.5 MMDE 1 Lσ 4.5
Dv 0.1 µbl 1 rσ 0.95
Iα , α ∈ {P, H} 17 φω

α , α ∈ {P, H, T } 0.1 ωα , α ∈ {P, H} 0.0025

Table 2
List of parameters and their values for the growth algorithm and numerical discretization.

Parameter Value Function

T hTAF 7.5 · 10−3 Threshold for the TAF concentration (sprouting)
µr 1.0 Mean value for the log-normal distribution (ratio radius/vessel length)
σr 0.2 Standard dev. for the log-normal distribution (ratio radius/vessel length)
λg 1.0 Regularization parameter to avoid bendings and sharp corners
γ 3.0 Murray parameter determining the radii at a bifurcation
Rmin 9.0 · 10−3 Minimal vessel radius
lmin 0.13 Minimal vessel length for which sprouting is activated
Rmax 0.035 Maximal vessel radius
RT 0.05 Threshold for the radius to distinguish between arteries and veins for t = 0
ζ 1.05 Sprouting parameter
distlink 0.08 Maximal distance at which a terminal vessel is linked to the network
τref 0.02 Lower bound for the wall shear stress
kWSS 0.4 Proportional constant (wall shear stress)
ks 0.14 Shrinking parameter
∆t 0.0025 Time step size
h3D 0.0364 Mesh size of the 3D grid
h1D 0.25 Mesh size of the initial 1D grid
∆tnet 2∆t Angiogenesis (network update) time interval

primary tumor is enlarged and small satellites are formed in the vicinity of the main tumor. The distribution of the
necrotic cells indicates that the main tumor consists mostly of necrotic cells, while the hypoxic and proliferative
cells gather around the nutrient-rich blood vessels. This means that the tumor cells can migrate against the flow
from the artery towards the vein. Apparently, the chemical potential caused by the nutrient source dominates the
interstitial flow.

These observations are consistent with simulation results and measurements discussed, e.g., in [37,68,69].
n [68,69] a tumor is introduced into a mouse. At the same time, anti-VEGF agents were injected into the mouse,
uch that the sprouting of new vessels growing towards the tumor is prevented. This process leads to the formation
f satellites located in the vicinity of the primary tumor as well as the accumulation of tumor cells at nutrient-rich
essels and cells. Furthermore, the primary tumor stops growing and forms a large necrotic core.

In Fig. 11, the L1-norms of the tumor species over time are presented for the case when angiogenesis was inactive
nd when it was active. While the profiles for different species in two cases look similar, the total tumor is about
0% times higher when angiogenesis is active. Diffusivity Dσ = 3 is large enough, and therefore, the nutrients

originating from the nutrient-rich vessels diffuse quickly throughout the domain.
In summary, one can conclude that without angiogenesis a tumor can grow to a certain extent, before the primary

tumor starts to collapse, i.e., a large necrotic core is formed. However, this does not mean that the tumor cells are
24



M. Fritz, P.K. Jha, T. Köppl et al. Computer Methods in Applied Mechanics and Engineering 384 (2021) 113975

t
r
Q
c
c

c
f
s
i
w
c
e
a

A

Fig. 9. Plot of the L2 norm of various species using four different time steps.

entirely removed from the healthy tissue. If there is a source of nutrients such as an artery close by, transporting
nutrient rich blood, a portion of tumor cells can survive by migrating towards the neighboring nutrient source.

5.4. Tumor growth with angiogenesis

As in the previous subsection, we compute the L1-norms of the tumor species φT at time t = 8. However, since
several stochastic processes are involved in the network growth and also Wiener processes appear in the proliferative
and hypoxic cell mass balances, several data sets have to be created in order to rule out statistical variations. In this
context, the issue arises as to how many data sets are needed to obtain a representative value. In order to investigate
this, we compute for every sample i , the L1-norm of the tumor species, denoted by φαL1,i , α ∈ {T, P, H, N }.
Additionally, the volume of the blood vessel network Vi is computed. For each data set with i samples, we compute
the mean values:

meani (V ) =
1
i

i∑
j=1

V j , mean
(
φαL1,i

)
=

1
i

i∑
j=1

φαL1, j , α ∈ {T, P, H, N } .

In Fig. 12, the mean values meani (V ) and mean
(
φαL1,i

)
, α ∈ {T, P, H, N }, are shown. From the plots we see

hat the mean of ∥φT ∥L1 stabilizes after about 25 samples. For the vessel volume, fluctuations in the sample means
educe with increasing sample and get small after 30 samples. While the results in Fig. 12 show that mean of the
oIs stabilizes with increasing sample and converge to some number, the trajectory in the figure could change with

hange in sample values. For example, if we shuffle the samples and recompute the quantities in Fig. 12, various
urves may look different.

As mentioned earlier, Fig. 11 presents the L1-norms of tumor species. For the angiogenesis simulations, we
ompute the mean and standard deviation using 50 samples. We see that the total tumor volume fraction varies
rom sample to sample, as expected. Both the hypoxic and the tumor cells show an exponential growth after t ≈ 4;
ee Fig. 11. After decreasing until t ≈ 3, the proliferative cell mass grows from t ≈ 4 onward. The result is that
n the case of angiogenesis, the overall nutrient concentration is higher compared to the case without angiogenesis,
hile the spatial variation of the nutrient is the same in the two; and hence the growth of the tumor in the two

ases are similar except that the tumor grows more rapidly in the case of angiogenesis. We will see in our second
xample, where Dσ = 0.05 is much smaller, that the nutrient concentration is higher near the nutrient rich vessels
nd tumor growth is more concentrated near these regions, see Fig. 18.

In Fig. 13, we show the evolving network together with the contour plot φT = 0.9 of the total tumor species.

t time t = 0.24 (top-left figure), we observe that new vessels originate from the artery and move towards the
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Fig. 10. Top left: Tumor growing in a mouse that is treated with anti-VEGF agents. As a consequence tumor satellites in the vicinity of the
main tumor can be detected. Top right: φT presented in a plane at z = 1 perpendicular to the z-axis. As seen in the medical experiments
he formation of satellites and the accumulation of tumor cells at the nutrient-rich artery are reproduced in the simulations. Bottom left:
istribution of necrotic cells (φN ). It can be seen that the main tumor consists of a large necrotic kernel. Bottom right: Distribution of
utrients (φσ ).
ource: Image taken from [68], with permission from Elsevier.

ypoxic core; the directions of these vessels being based on the gradient of TAF with random perturbations. At
= 0.64 (top-right), we see a large number of new vessels formed as predicted by the angiogenesis algorithm.
owever, at time t = 3.2 (bottom-left), vessels adapt and due to lower flow rates in some newly created vessels,

ome vessels are gradually removed, and thus the number of vessels decreases. Comparing t = 3.2 and t = 5.6
bottom-right), we see that the network has stabilized and little has changed in this time window. From Fig. 13, we
an also summarize that the tumor growth is directed towards the nutrient-rich vessels.

Next, we plot the tumor species at the z = 1 plane along with the nutrient distribution in the vessels in
ig. 14. The plot corresponds to time t = 8. The plots corresponding to the necrotic species show that the necrotic
oncentration is typically higher away from the nutrient-rich vessels. From the hypoxic plot, we see that it is higher
ear these vessels, and this is explained by the fact that as soon as the proliferation of new tumor cells takes place,
ue to nutrient concentration below the proliferative-to-hypoxic transition threshold, these newly added proliferative
umor cells convert to hypoxic cells. Further transition to necrotic cells would take place if the nutrients are even
elow the hypoxic-to-necrotic transition threshold. This is also consistent with the increase concentration of the

roliferative cells near the outer tumor–healthy cell phase interface.

26
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Fig. 11. Quantities of interests (QoIs) related to tumor species over a time interval [0, 8] for the two-vessels setting. For the case
without angiogenesis, the mean QoIs computed using 10 samples is shown. For the angiogenesis case, we compute the mean and
standard deviation from 50 samples. The solid line shows the mean QoI as a function of time. The thick layer around the solid line
corresponds to interval (µα(t) − σα(t), µα(t) + σα(t)) ∩ [0, ∞), for t ∈ [0, T ], where µα(t), σα(t) are the mean and standard deviations of
QoI α ∈ {∥φT ∥L1 , ∥φP∥L1 , ∥φH ∥L1 , ∥φN ∥L1 } at time t . The variations in the QoIs for the non-angiogenesis case are very small. The mean
of the total tumor volume fraction ∥φT ∥L1 at the final time for the angiogenesis case is about 1.7 times that of the non-angiogenesis case.

Fig. 12. The mean values for the L1-norm of the tumor cell volume fractions φT , φP , φH , φN and the volume of the blood vessel network
t time t = 8 from increasing number of samples. Results correspond to the two-vessel setting. The mean of the total tumor volume fraction
ppears to be stable after about 28 samples. The mean of the vessel volume shows smaller fluctuations as the number of samples in the
ata set grows.

.5. Sensitivity of the growth parameters

In Fig. 15, we present the results of a parametric study designed to test the robustness of the vascular network
odel to changes in the values of the parameters γ and kW SS . It is observed that changes in these parameters can

roduce significant changes in the network structure for given values of the other model parameters.
The parameter γ , for example, appears in Murray’s law (3.4), and controls the radii of network branches, with

ncrease in γ leading to larger radii of bifurcating vessels. Such larger radii vessels have a higher probability for
onnecting with neighboring vessels so as to increase the flow and to continue to evolve; for high γ , the networks
re more dense and the total network length is higher (see Fig. 16, right). Conversely, small values of γ promote
hin network segments with lower probability for connecting to neighboring vessels, see Fig. 16, left.
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Fig. 13. Growth of the tumor and the network at four different time points t ∈ {0.24, 0.64, 3.20, 5.60} and one specific sample. We show
ontour φT = 0.9.

The change in vessel radius due to the vessel wall shear stress is proportional to the constant kWSS and stimulus
SWSS,i , see (3.8) and (3.9). Further, the vessels shrink naturally and this effect is controlled by constant ks (higher ks

eans radius decay is higher). In our study, we varied the values of parameter kWSS and found that, for a large kWSS,
adii of sprouting vessels decrease, and new sprouts are removed in their early stage of growth before they could
oin the nearby vessels, see Fig. 17 left. As a result of new sprouts getting removed in early stages, the total network
ength and the vessel volume stay constant with respect to time with constant values very close to the initial values.
or a very small kW SS with ks being fixed, the radii during the early phase of simulations do not change much.
ut in the later phases of the simulation, the radii begin to decay and even with large flow rate (which means large
all shear stress); their decay is unavoidable as the term kWSSSWSS,i is small as kWSS is small and cannot counter

he effects of ks . In summary, in the long run the radii of vessels decrease with time, see Fig. 17 right. We also
bserved that for values of kWSS within certain bounds, its impact on the network morphology is low. However,
hen kWSS is outside the bound, some care is required so that vessel radii do not tend to zero with time.

.6. Angiogenesis and tumor growth for the capillary network

Returning to (5.1), let us consider a smooth spherical tumor core with center at xc = (1.3, 0.9, 0.7) and radius
c = 0.3 in the domain Ω = (0, 2)3. The initial blood vessel network and boundary conditions for pressure and
utrient on the network is described in Fig. 20.

In the simulation, the vessels are uniformly refined two times. We fix φa = 0 for a ∈ {H, N , TAF} and
= 0.5 at t = 0. The domain is discretized uniformly with a mesh size h = 0.0364 and the time step
σ 3D
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∆

Fig. 14. Tumor cell distributions in the plane z = 1 with angiogenesis for one sample. Top left: φT . Top right: φN . Bottom left: φH . Bottom
right: φP .

Fig. 15. Results of a parametric study in which certain growth parameters γ and kWSS are varied to measure their impact on the total
network length and volume. For these studies, we considered a coarse mesh for the 3D domain with 163 uniform cells and time step

t = 0.01. The network update time step was fixed to ∆tnet = 2∆t .
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Fig. 16. Network structure for different values of γ at time t = 2.4. Left: γ = 2. Middle: γ = 3. Right: γ = 4.

Fig. 17. Network structure for different values of kWSS at time t = 6. Left: kW SS = 4. Middle: kW SS = 0.4. Right: kW SS = 0.001.

ize is ∆t = 0.0025. We identify four inlet ends (see Fig. 20) at which the unit nutrient φv = φvin = 1 and pressure
pv = pin = 8000.0 is prescribed as the Dirichlet boundary condition. At the remaining boundaries, we prescribe
he pressure pv = pout = 1000.0 and apply an upwinding scheme for the nutrients.

At t = 0, pv and φv at internal network nodes are set to zero. Furthermore, we set Lσ = 0.5, Dσ = 0.05,
DT AF = 0.1, T hTAF = 0.0075, µr = 1.5, kWSS = 0.45, and ∆tnet = 10∆t . All the other parameter values remain
nchanged, see Tables 1 and 2.

We first compare the tumor volume with and without angiogenesis; see Fig. 18. The results are similar to the
wo-vessel setting. They show that the overall tumor growth is higher with angiogenesis as expected. We also
bserve that proliferative cells start to grow rapidly at t ≈ 3.5 with angiogenesis as compared to t ≈ 4.75 without
ngiogenesis. Production of necrotic cells is higher in the non-angiogenesis case until time t ≈ 5. Compared to
ig. 11 for the two-vessel setting, the variations in the tumor species related QoIs are much smaller in Fig. 18.
his may be due to the fact that diffusivity of the nutrients in the latter case is much smaller, and that Lσ is also
maller in the later case resulting in a smaller exchange of nutrients. Next, we plot the mean of QoIs as we increase
he size of data in data sets in Fig. 19; results show that mean of tumor species related QoIs is stable and can be
omputed accurately using fewer samples. This relates to the fact that we see smaller variation in the L1-norm of
he tumor species φT in Fig. 18. The mean of vessel volume shows some variations for smaller data sets and the
ariations get smaller later on; still the variations are very small and contained in range [0.117, 0.121].

In Figs. 20 and 22, some results for the capillary network are summarized, where in Fig. 20 the growing network
s shown and in the Fig. 21 the vessel network as a result of angiogenesis is shown at the final simulation time
= 8 for three samples. In Fig. 22, we compare the tumor species at time t = 5.12 for the angiogenesis and non-
ngiogenesis case. As in the two-vessel case, the tumor starts to grow faster after it is vascularized. Apparently, the
umor cells tend to migrate towards the nutrient rich part of the computational domain despite the fact that they
ave to move against the direction of flow which is induced by the pressure gradient. Not surprisingly, the volume
raction of the necrotic cells is larger in the part that is facing away from the nutrient rich part and related to the
hole tumor it remains relatively small.
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Fig. 18. Quantities of interests (QoIs) related to tumor species over a time interval [0, 8] for the capillary network setting. Similar to the
two-vessels simulation, we compute the mean and standard deviation using 50 and 10 samples for the case with and without angiogenesis,
respectively. We refer to Fig. 11 for more details on the plots. As in the case of two-vessels setting, the variation in the QoIs are much
smaller for the non-angiogenesis case. The mean of the total tumor volume fraction ∥φT ∥L1 for the angiogenesis case is about 1.62 times
hat of the non-angiogenesis case.

Fig. 19. The mean values for the L1-norm of the tumor cell volume fractions φT , φP , φH , φN and the volume of the blood vessel network
t time t = 8. Results correspond to the capillary network setting. The mean of the total tumor volume fraction stabilizes with small samples.
his agrees with Fig. 18 that shows that the variations in L1-norm QoIs are overall smaller. The mean of the vessel volume shows some
hange when samples are small and stabilizes as the size of data set grows.

It is interesting to observe that, as in the two-vessel case, the contour plot of φT for φT = 0.9 exhibits a secondary
tructure, while in the simulation without angiogenesis, this effect cannot be seen. Moreover, as in the two-vessel
xperiment, the tumor contains a large necrotic kernel if there is no angiogenesis, indicating that the tumor has
lmost died. This simulation portrays once again that angiogenesis can play a crucial role in the evolution of tumor
rowth.

. Summary and outlook

In this work, we presented a stochastic model for tumor growth characterized by a coupled system of nonlinear
DEs of Cahn–Hilliard type coupled with a model of an evolving vascular network. A 3D–1D model is developed
o simulate flow and nutrient transport within both the network and porous tissue so as to depict the phenomena of
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Fig. 20. Top left: Spherical tumor core (Contour plot for φT = 0.9) at xc = (1.3, 0.9, 0.7) with radius rc = 0.3 surrounded by a network
f vessels. We identify four inlet ends (red cross-sections) at which the unit nutrient φv = φvin = 1.0 and pressure pv = pin = 8000 is
rescribed as a Dirichlet boundary condition. Top right: Formation of first sprouts at t = 1.20 growing towards the tumor core. Bottom
eft: Around t = 3.04 a complex vascular network is formed and the tumor starts to grow towards the nutrients. Bottom right: At t = 5.60
he tumor is significantly enlarged and creates satellites near the nutrient vessels. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)

Fig. 21. Plot of vessel network at t = 8 from three samples for the capillary network setting.

angiogenesis. In this model, the blood vessel network is given by a 1D graph-like structure coupling the flow and
transport processes in the network and tissue. Furthermore, the model facilitates the handling of a growing network
structure with bifurcation of growing vessels which is crucial for the simulation of angiogenesis. The angiogenesis
process is simulated by an iterative algorithm starting from a single artery and a vein or a given network. The
blood vessel network supplying the tumor employs Murray’s law to determine the radii at a bifurcation of network
capillaries. The choice of radii and lengths of new vessels as well as bifurcations are governed by stochastic
algorithms. The direction of growth of the vessels is determined by the gradient of the local TAF concentration.

We demonstrate that the model is capable of simulating the development of satellite of tumor concentrations in
nutrient rich vessels near necrotic cores in agreement with some experimental observations. Also, as expected, rapid

growth of solid tumor mass accompanies increased supply of nutrient through angiogenesis.
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h

Fig. 22. Distribution of tumor cells for t = 5.12. The simulation results for tumor growth supported by angiogenesis are shown on the left

and side, while the results for tumor growth without angiogenesis are presented on the right. The necrotic (φN ) and hypoxic (φH ) volume
fractions are visualized in the z-plane at z = 0.7. For φT , in both cases a contour plot for φT = 0.9 is shown.

We believe that our model can serve as a starting point for important predictive simulations of cancer therapy;
in particular the effect of anti-angiogenic drugs could be studied using models of these types.

However, models of these kind require experimental data such as MR imaging data that inform the vasculature
in the tissue as well as the parameters in the tumor growth model and vasculature flow model. In the present work,
the adaption of the vessel radii is related to the wall shear stress. However, other effects can influence the vessel
radii that could be included, such as metabolic hematocrit-related stimulus, which may also lead to a significant
pruning and restructuring of the network. Further work on refining and improving computational algorithms is also
needed, such as the development of efficient distributed solvers for the 3D–1D systems. We hope to address these
issues and other extensions in future work.
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[40] M.A. Chaplain, M. Lachowicz, Z. Szymańska, D. Wrzosek, Mathematical modelling of cancer invasion: The importance of cell-cell

adhesion and cell-matrix adhesion, Math. Models Methods Appl. Sci. 21 (04) (2011) 719–743.
[41] C. Engwer, C. Stinner, C. Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and

proliferation, Math. Models Methods Appl. Sci. 27 (07) (2017) 1355–1390.
[42] D. Ambrosi, F. Bussolino, L. Preziosi, A review of vasculogenesis models, J. Theor. Med. 6 (1) (2005) 1–19.
[43] D. Ambrosi, L. Preziosi, Cell adhesion mechanisms and stress relaxation in the mechanics of tumours, Biomech. Model. Mechanobiol.

8 (2009) 397–413.
[44] L. Preziosi, Cancer Modelling and Simulation, CRC Press, 2003.
[45] N. Bellomo, N. Li, P.K. Maini, On the foundations of cancer modelling: Selected topics, speculations, and perspectives, Math. Models

Methods Appl. Sci. 18 (04) (2008) 593–646.
[46] N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interaction with the immune system,

Math. Comput. Modelling 32 (3–4) (2000) 413–452.
[47] P. Koumoutsakos, I. Pivkin, F. Milde, The fluid mechanics of cancer and its therapy, Annu. Rev. Fluid Mech. 45 (2013) 325–355.
[48] M. Fritz, E. Lima, J.T. Oden, B. Wohlmuth, On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor

growth models, Math. Models Methods Appl. Sci. 29 (09) (2019) 1691–1731.
[49] A. Hawkins-Daarud, K.G. van der Zee, J.T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth

model, Int. J. Numer. Methods Biomed. Eng. 28 (1) (2012) 3–24.
[50] T. Hillen, K.J. Painter, M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Methods

Appl. Sci. 23 (01) (2013) 165–198.
[51] Y. Tao, M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal. 43

(2) (2011) 685–704.
[52] G. Da Prato, A. Debussche, Stochastic Cahn–Hilliard equation, Nonlinear Anal. TMA 26 (2) (1996) 241–263.
[53] Carlo Orrieri, Elisabetta Rocca, Luca Scarpa, Optimal control of stochastic phase-field models related to tumor growth, ESAIM Control

Optim. Calc. Var. 26 (2020) 104, http://dx.doi.org/10.1051/cocv/2020022.
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