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Abstract

In this chapter we present a rigorous convergence analysis of finite difference
and finite element approximation of nonlinear nonlocal models. In the previous
chapter, we considered a differentiable version of the original bond-based
model introduced in Silling (J Mech Phys Solids 48(1):175–209, 2000). There
we showed, for a fixed horizon of nonlocal interaction �, that well-posed
formulations of the model can be developed over Hölder spaces and Sobolev
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spaces. In this chapter we apply these formulations to show a priori convergence
for the discrete finite difference and finite element methods. We show that the
error made using the forward Euler in time and a finite difference (i.e., piecewise
constant) discretization in space with time step �t and spatial discretization h is
of the order ofO.�tCh=�2/. For a central difference approximation in time and
piecewise linear finite element approximation in space, the approximation error is
of the order ofO.�tCh2=�2/. We point out these are the first such error estimates
for nonlinear nonlocal fracture formulations and are reported in Jha and Lipton
(2017b Numerical analysis of nonlocal fracture models models in holder space.
arXiv preprint arXiv:1701.02818. To appear in SIAM Journal on Numerical
Analysis 2018) and Jha and Lipton (2017a, Finite element approximation of
nonlocal fracture models. arXiv preprint arXiv:1710.07661). We then go on to
prove the stability of the semi-discrete approximation and show that the energy
of the discrete approximation is bounded in terms of work done by the body
force and initial energy put into the system. We look forward to improvements
and development of a posteriori error estimation in the coming years.

Keywords
Peridynamic modeling · Finite differences · Finite elements · Stability ·
Convergence

Introduction

In this chapter we present a rigorous convergence analysis of finite difference and
finite element approximation of nonlinear nonlocal fracture models. The model
considered in this work is a differentiable version of the original peridynamic bond-
based model introduced in Silling (2000) and analyzed in Lipton (2014, 2016).
It is a bond-based model characterized by a nonlinear double-well potential. As
discussed in the previous chapter, the nonlocal evolution converges to a sharp
fracture evolution with bounded Griffith fracture energy as the length scale of
nonlocality � tends to zero. In this limit the displacement field satisfies the linear
elastic wave equation off the fracture set.

We first consider the forward Euler time discretization and finite difference
approximations in space with a uniform square mesh in 2-d and cubic mesh in 3-d.
The mesh size is taken to be h and the time step is �t . An a priori bound on the
error is obtained for solutions in the Hölder space C0;�

0 .DIRd /, where � 2 .0; 1�
is the Hölder exponent, D is the material domain, and d D 2; 3 is the dimension.
The rate of convergence is shown to be no larger than O.�t C h�=�2/. We also
show stability of the semi-discrete approximation. The semi-discrete evolution is
shown to be uniformly bounded in time in terms of initial energy and the work done
by body force. In this chapter we prove all results for the forward Euler in time
discretization, and we refer to Jha and Lipton (2017b) for the general single-step
time discretization.
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Next we consider central differences in time and a finite element discretization
in space using triangular or tetrahedral meshes and conforming linear elements.
AssumingH2

0 .DIR
d / solutions, we estimate the error and obtain a convergence rate

of O.�t C h2=�2/. We show that the semi-discrete evolution for the finite element
scheme is also stable in time. We provide a stability analysis of the fully discrete
problem, for the linearized peridynamic force. For this case we exhibit a CFL-like
stability condition for the time step �t .

The results presented here show that convergence requires h� < �2 for the finite
difference case while h2 < �2 (or h < �) for the finite element case. The technical
reason for the appearance of the factor 1=�2 in these convergence rates is that we
are numerically approximating a nonlinear but Lipschitz continuous vector valued
ODE. Here the vector space is the space of square integrable displacement fields,
and the 1=�2 factor is proportional to the Lipschitz constant of the nonlocal nonlinear
force acting on mean square integrable displacement fields. Our results requiring
h < � are consistent with the earlier work of Tian and Du (2014) for linear nonlocal
forces and finite element approximations applied to equilibrium problems. We point
out that the nonlocal nonlinear models treated here are identified with sharp fracture
evolutions as � ! 0 (see Lipton 2014, 2016). However a convergence rate with
respect to � remains to be established. We discuss this aspect in the conclusions
section.

There is a rapidly growing literature in peridynamic modeling and analysis (see,
e.g., Emmrich et al. 2007; Du and Zhou 2011; Foster et al. 2011; Aksoylu and
Parks 2011; Du et al. 2013a; Dayal 2017; Emmrich et al. 2013; Mengesha and Du
2013; Lipton 2014, 2016; Lipton et al. 2016; Emmrich and Puhst 2016; Du, Tao,
and Tian 2017; Lipton et al. 2018; Aksoylu and Mengesha 2010; Mengesha and Du
2013, 2014; Aksoylu and Unlu 2014). In Macek and Silling (2007), Gerstle et al.
(2007), Littlewood (2010), the finite element method is applied to the peridynamics
formulation for the simulation of cracks. In Du et al. (2013b), the finite element
approximation of linear peridynamic models for general quasistatic evolutions is
analyzed. For linear elastic local models, the stability of the general Newmark time
discretization is shown in Baker (1976), Grote and Schötzau (2009), and Karaa
(2012). This behavior is shown to persist for elastic nonlocal models in Guan and
Gunzburger (2015). In Chen and Gunzburger (2011), the finite element approxima-
tion with continuous and discontinuous elements is developed for nonlocal problems
in one dimension. A numerical analysis of linear peridynamics models for a 1-d bar
has been carried out in Weckner and Emmrich (2005) and Bobaru et al. (2009).
In Tian and Du (2014) and Tian et al. (2016a,b), an asymptotically compatible
approximation scheme is identified. In Askari et al. (2008), Silling et al. (2010),
Ha and Bobaru (2011), Agwai et al. (2011), Bobaru and Hu (2012), and Zhang et al.
(2016), crack prediction and crack branching phenomenon are analyzed through
peridynamics. The list of references is by no means complete; additional references
to the literature can be found in this handbook.
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Review of the Nonlocal Model

We define the strain associated with the displacement field u.x/ as

S.u/ D S.y; xIu/ D
u.y/ � u.x/
jy � xj

� ey�x and ey�x D
y � x

jy � xj
: (1)

We consider the following type of potential (see Figs. 1 and 2)

W �.S; y � x/ D !.x/!.y/
J �.jy � xj/

�
f .jy � xjS2/; (2)

where the function f W RC ! R is positive, smooth, and concave and satisfies the
following properties

lim
r!0C

f .r/

r
D f 0.0/; lim

r!1
f .r/ D f1 <1: (3)

Fig. 1 Two-point potential
W �.S; y � x/ as a function
of strain S for fixed y � x

Fig. 2 Nonlocal force
@SW

�.S; y � x/ as a function
of strain S for fixed y � x.
Second derivative of
W �.S; y � x/ is zero at
˙Nr=

p
jy � xj
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The function J �.r/ D J .r=�/ is the influence function where 0 � J .jxj/ � M for
x 2 H1.0/ and J D 0 outside. The boundary function 0 � !.x/ � 1 takes the value
0 on the boundary @D of the material domainD. For x 2 D, a distance � away from
boundary, !.x/ is 1 and smoothly decreases from 1 to zero as x approaches @D.

In the sequel we will set

N!.x/ D !.x/!.x C ��/ (4)

and we assume

jr N!j � C!1 <1 and jr2 N!j � C!2 <1:

The peridynamic force is written �rPD� and given by

� rPD�.u/.x/

D
2

�d!d

Z

H�.x/

@SW
�.S; y � x/

y � x

jy � xj
dy

D
4

�dC1!d

Z

H�.x/

!.x/!.y/J �.jy � xj/f 0.jy � xjS.u/2/S.u/ey�xdy; (5)

Peridynamics Equation

Let u W Œ0; T ��D ! R
d be the displacement field such that it satisfies the following

evolution equation

�@2t tu.t; x/ D �rPD
�.u.t//.x/C b.t; x/; (6)

where b.t; x/ is the body force and � is the density. We will assume � D 1

throughout the chapter. The initial condition is given by

u.0; x/ D u0.x/ and @tu.0; x/ D v0.x/ (7)

and the boundary condition is given by

u.t; x/ D 0 8x 2 @D;8t 2 Œ0; T �: (8)

Throughout this chapter, we will assume u D 0 on the boundary @D and is extended
outside D by zero.

Additionally we can also write the evolution in weak form by multiplying Eq. 6
by a smooth test function Qu with Qu D 0 on @D to get

. Ru.t/; Qu/ D .�rPD�.u.t//; Qu/C .b.t/; Qu/:
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We denote L2 dot product of u; v as .u; v/. An integration by parts easily shows for
all smooth u; v taking zero boundary values that

.�rPD�.u/; v/ D �a�.u; v/;

where

a�.u; v/

D
2

�dC1!d

Z

D

Z

H�.x/

!.x/!.y/J �.jy � xj/

f 0.jy � xjS.u/2/jy � xjS.u/S.v/dydx: (9)

Weak form of the evolution in terms of operator a� becomes

. Ru.t/; Qu/C a�.u.t/; Qu/ D .b.t/; Qu/: (10)

Last we introduce the peridynamic energy. The total energy E�.u/.t/ is given by
the sum of kinetic and potential energy given by

E�.u/.t/ D 1

2
jj Pu.t/jjL2.DIRd / C PD

�.u.t//; (11)

where potential energy PD� is given by

PD�.u/ D
Z

D

�
1

�d!d

Z

H�.x/

W �.S.u/; y � x/dy
�
dx:

We state the following equation which will be used later in the chapter

d

dt
E�.u/.t/ D . Ru.t/; Pu.t// � .�rPD�.u.t//; Pu.t//: (12)

In order to develop the approximation theory in the following sections, we find
it convenient to write the evolution Eq. 6 as an equivalent first order system with
y1.t/ D u.t/ and y2.t/ D v.t/ with v.t/ D @tu.t/. Let y D .y1; y2/

T where
at each time y1; y2 belong to the same function space V , and let F �.y; t/ D

.F �
1 .y; t/; F

�
2 .y; t//

T such that

F �
1 .y; t/ WD y2 (13)

F �
2 .y; t/ WD �rPD

�.y1/C b.t/: (14)

The initial boundary value associated with the evolution Eq. 6 is equivalent to the
initial boundary value problem for the first order system given by
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d

dt
y D F �.y; t/; (15)

with initial condition given by y.0/ D .u0; v0/T 2 X D V � V .
To establish the error estimates, we will use the Lipschitz property of the

peridynamic force in X D L2.DIRd / � L2.DIRd /. It is given by Theorem 6.1
of Lipton 2016.

Theorem 1.

jjF �.y; t/ � F �.z; t /jjX �
L

�2
jjy � zjjX 8y; z 2 X;8t 2 Œ0; T � (16)

for all y; z 2 L2.DIRd /2.
Here L does not depend on u; v.

Finite Difference Approximation

In this section, we present the finite difference scheme and compute the rate of
convergence. We also consider the semi-discrete approximation and prove the bound
on energy of semi-discrete evolution in terms of initial energy and the work done by
body forces.

Let h be the size of a mesh and �t be the size of time step. We will keep �
fixed and assume that h < � < 1. Let Dh D D \ .hZ/d be the discretization of
material domain. Let i 2 Z

d be the index such that xi D hi 2 D. Let Ui be the unit
cell of volume hd corresponding to the grid point xi , see Fig. 3. The exact solution
evaluated at grid points is denoted by .ui .t /; vi .t //.

Time Discretization

Let Œ0; T �\ .�tZ/ be the discretization of time domain where�t is the size of time
step. Denote fully discrete solution at .tk D k�t;xi D ih/ as . Ouki ; Ov

k
i /. Similarly,

the exact solution evaluated at space-time grid points is denoted by .uki ; v
k
i /. We

enforce the boundary condition Ouki D 0 for all xi … D and for all k.
We begin with the forward Euler time discretization, with respect to velocity, and

the finite difference scheme for . Ouki ; Ov
k
i / is written

OukC1i � Ouki
�t

D OvkC1i (17)

OvkC1i � Ovki
�t

D �rPD�. Ouk/.xi /C bki (18)
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The scheme is complemented with the discretized initial conditions Ou0i D . Ou0/i
and Ov0i D . Ov0/i . If we substitute Eq. 17 into Eq. 18, we get the standard central
difference scheme in time for second order in time differential equation. Here we
have assumed, without loss of generality, � D 1.

The piecewise constant extensions of the discrete sets f Ouki gi2Zd and fOvki gi2Zd are
given by

Ouk.x/ WD
X

i;xi2D

Ouki �Ui .x/

Ovk.x/ WD
X

i;xi2D

Ovki �Ui .x/

In this way we represent the finite difference solution as a piecewise constant
function. We will show that this function provides an L2 approximation of the exact
solution.

Convergence Results
In this section we provide upper bounds on the rate of convergence of the discrete
approximation to the solution of the peridynamic evolution. The L2 approximation
error Ek at time t k , for 0 < tk � T , is defined as

Ek WD
��� Ouk � uk

���
L2.DIRd /

C
��� Ovk � vk

���
L2.DIRd /

The upper bound on the convergence rate of the approximation error is given by the
following theorem.

Fig. 3 (a) Typical mesh of
size h. (b) Unit cell Ui
corresponding to material
point xi
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Theorem 2 (Convergence of finite difference approximation (forward Euler
time discretization)). Let � > 0 be fixed. Let .u; v/ be the solution of peridynamic
equation Eq. 15. We assume u; v 2 C2.Œ0; T �IC

0;�
0 .DIRd //. Then the forward

Euler time discretization, and finite difference spatial discretization scheme given by
Eqs. 17 and 18, is consistent in both time and spatial discretization and converges
to the exact solution uniformly in time with respect to the L2.DIRd / norm. If we
assume the error at the initial step is zero, then the error Ek at time t k is bounded
and to leading order in the time step �t satisfies

sup
0�k�T =�t

Ek � O

�
Ct�t C Cs

h�

�2

�
; (19)

where constants Cs and Ct are independent of h and �t and Cs depends on the
Hölder norm of the solution and Ct depends on the L2 norms of time derivatives of
the solution.

Here we have assumed the initial error to be zero for ease of exposition only.
We remark that the explicit constants leading to Eq. 19 can be large. The

inequality that delivers Eq. 19 is given to leading order by

sup
0�k�T =�t

Ek � exp
�
T .1C 6 NC=�2/

�
T
�
Ct�t C .Cs=�

2/h�
�
; (20)

where the constants NC , Ct , and Cs are given by Eqs. 43, 45, and 46. The explicit
constant Ct depends on the spatial L2 norm of the time derivatives of the solution,
and Cs depends on the spatial Hölder continuity of the solution and the constant
NC . This constant is bounded independently of horizon �. Although the constants

are necessarily pessimistic, they deliver a priori error estimates. These constants are
discussed in Jha and Lipton (2017a) in the context of fracture experiments. Fracture
experiments are on the order of hundreds of 	-sec, and the size of the constants in
the estimate for finite element simulations remains small for tens of 	-sec. For finite
element schemes, we have a priori estimates with constants that stay small for same
order of magnitude in time as fracture experiments. These features are discussed in
Jha and Lipton (2017a,b).

Error Analysis
We define the L2 projections of the actual solutions onto the space of piecewise
constant functions defined over the cells Ui . These are given as follows. Let . Quki ; Qv

k
i /

be the average of the exact solution .uk; vk/ in the unit cell Ui given by

Quki WD
1

hd

Z

Ui

uk.x/dx

Qvki WD
1

hd

Z

Ui

vk.x/dx
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and the L2 projection of the solution onto piecewise constant functions is . Quk; Qvk/
given by

Quk.x/ WD
X

i;xi2D

Quki �Ui .x/ (21)

Qvk.x/ WD
X

i;xi2D

Qvki �Ui .x/ (22)

The error between . Ouk; Ovk/T and .u.tk/; v.tk//T is now split into two parts. From
the triangle inequality, we have

��� Ouk � u.tk/
���
L2.DIRd /

�
��� Ouk � Quk

���
L2.DIRd /

C
��� Quk � uk

���
L2.DIRd /

��� Ovk � v.tk/
���
L2.DIRd /

�
��� Ovk � Qvk

���
L2.DIRd /

C
��� Qvk � vk

���
L2.DIRd /

In section “Error Analysis for Approximation of L2 Projection of the Exact
Solution” we will show that the error between the L2 projections of the actual
solution and the discrete approximation decays according to

sup
0�k�T =�t

��
�� Ouk � Quk

�
��
L2.DIRd /

C
�
�� Ovk � Qvk

�
��
L2.DIRd /

�
D O

�
�t C

h�

�2

�
: (23)

In what follows we can estimate the terms
��
� Quk � u.tk/

��
�
L2./

and
��
� Qvk � v.tk/

��
�
L2./

(24)

and show they go to zero at a rate of h� uniformly in time. The estimates given by
Eq. 23 together with the O.h�/ estimates for Eq. 24 establish Theorem 2. We now
establish the L2 estimates for the differences Quk � u.tk/ and Qvk � v.tk/.

We write

��� Quk � uk
���
2

L2.DIRd /

D
X

i;xi2D

Z

Ui

ˇ̌
ˇ Quk.x/ � uk.x/

ˇ̌
ˇ
2

dx

D
X

i;xi2D

Z

Ui

ˇ̌
ˇ̌ 1
hd

Z

Ui

.uk.y/ � uk.x//dy

ˇ̌
ˇ̌
2

dx

D
X

i;xi2D

Z

Ui

�
1

h2d

Z

Ui

Z

Ui

.uk.y/ � uk.x// � .uk.z/ � uk.x//dyd z
�
dx
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�
X

i;xi2D

Z

Ui

�
1

hd

Z

Ui

ˇ̌
uk.y/ � uk.x/

ˇ̌2
dy

�
dx (25)

where we used Cauchy’s inequality and Jensen’s inequality. For x;y 2 Ui ,
jx � yj � ch, where c D

p
2 for d D 2 and c D

p
3 for d D 3. Since u 2 C0;�

0

we have

ˇ̌
uk.x/ � uk.y/

ˇ̌
D jx � yj�

ˇ̌
uk.y/ � uk.x/

ˇ̌

jx � yj�

� c�h�
��uk

��
C0;� .DIRd /

� c�h� sup
t
ku.t/kC0;� .DIRd / (26)

and substitution in Eq. 25 gives

��
� Quk � uk

��
�
2

L2.DIRd /
� c2�h2�

X

i;xi2D

Z

Ui

dx

�
sup
t
ku.t/kC0;� .DIRd /

�2

� c2� jDjh2�
�

sup
t
ku.t/kC0;� .DIRd /

�2
:

A similar estimate can be derived for jj Qvk � vkjjL2 , and substitution of the
estimates into Eq. 24 gives

sup
k

���� Quk � u.tk/
���
L2.DIRd /

C
��� Qvk � v.tk/

���
L2.DIRd /

�
D O.h�/:

In the next section, we establish the error estimate (Eq. 23) for forward Euler in
section “Error Analysis for Approximation of L2 Projection of the Exact Solution”.

Error Analysis for Approximation of L2 Projection of the Exact Solution
In this subsection, we estimate the difference between approximate solution . Ouk; Ovk/
and the L2 projection of the exact solution onto piecewise constant functions given
by . Quk; Qvk/ (see Eqs. 21 and 22). Let the differences be denoted by ek.u/ WD Ouk� Quk

and ek.v/ WD Ovk � Qvk , and their evaluations at grid points are eki .u/ WD Ou
k
i � Qu

k
i and

eki .v/ WD Ov
k
i � Qv

k
i . Subtracting . QukC1i � Quki /=�t from Eq. 17 gives

OukC1i � Ouki
�t

�
QukC1i � Quki
�t

D OvkC1i �
QukC1i � Quki
�t

D OvkC1i � QvkC1i C

 

QvkC1i �
@ QukC1i

@t

!

C

 
@ QukC1i

@t
�
QukC1i � Quki
�t

!

:
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Taking the average over unit cell Ui of the exact peridynamic equation Eq. 15 at

time t k , we will get QvkC1i �
@ QukC1i

@t
D 0. Therefore, the equation for eki .u/ is given

by

ekC1i .u/ D eki .u/C�te
kC1
i .v/C�t
ki .u/; (27)

where we identify the discretization error as


ki .u/ WD
@ QukC1i

@t
�
QukC1i � Quki
�t

: (28)

Similarly, we subtract . QvkC1i � Qvki /=�t from Eq. 18 and add and subtract terms
to get

OvkC1i � Ovki
�t

�
QvkC1i � Qvki
�t

D �rPD�. Ouk/.xi /C bki �
@vki
@t
C

 
@vki
@t
�
QvkC1i � Qvki
�t

!

D �rPD�. Ouk/.xi /C bki �
@vki
@t

C

 
@ Qvki
@t
�
QvkC1i � Qvki
�t

!

C

 
@vki
@t
�
@ Qvki
@t

!

; (29)

where we identify 
ki .v/ as follows


ki .v/ WD
@ Qvki
@t
�
QvkC1i � Qvki
�t

: (30)

Note that in 
k.u/ we have
@ QukC1i

@t
, and from the exact peridynamic equation, we

have

bki �
@vki
@t
D rPD�.uk/.xi /: (31)

Combining Eqs. 29, 30, and 31 gives

ekC1i .v/ D eki .v/C�t

k
i .v/C�t

 
@vki
@t
�
@ Qvki
@t

!

C�t
	
�rPD�. Ouk/.xi /C rPD�.uk/.xi /
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D eki .v/C�t

k
i .v/C�t

 
@vki
@t
�
@ Qvki
@t

!

C�t
	
�rPD�. Ouk/.xi /C rPD�. Quk/.xi /




C�t
	
�rPD�. Quk/.xi /C rPD�.uk/.xi /



:

The spatial discretization error �ki .u/ and �ki .v/ is given by

�ki .u/ WD
	
�rPD�. Quk/.xi /C rPD�.uk/.xi /



(32)

�ki .v/ WD
@vki
@t
�
@ Qvki
@t
: (33)

We finally have

ekC1i .v/ D eki .v/C�t
�

ki .v/C �

k
i .u/C �

k
i .v/

�

C�t
	
�rPD�. Ouk/.xi /C rPD�. Quk/.xi /



: (34)

We now show the consistency and stability properties of the numerical scheme.

Consistency
We deal with the error in time discretization and the error in spatial discretization
error separately. The time discretization error follows easily using the Taylor’s
series, while the spatial discretization error uses properties of the nonlinear peri-
dynamic force.

Time discretization: We first estimate the time discretization error. A Taylor
series expansion is used to estimate 
ki .u/ as follows


ki .u/ D
1

hd

Z

Ui

�
@uk.x/
@t

�
ukC1.x/ � uk.x/

�t

�
dx

D
1

hd

Z

Ui

�
�
1

2

@2uk.x/
@t2

�t CO..�t/2/

�
dx:

Computing the L2 norm of 
ki .u/ and using Jensen’s inequality gives

��
k.u/
��
L2.DIRd /

�
�t

2

���
�
@2uk

@t2

���
�
L2.DIRd /

CO..�t/2/

�
�t

2
sup
t

����
@2u.t/
@t2

����
L2.DIRd /

CO..�t/2/:
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Similarly, we have

��
k.v/
��
L2.DIRd /

D
�t

2
sup
t

����
@2v.t/

@t2

����
L2.DIRd /

CO..�t/2/:

Spatial discretization: We now estimate the spatial discretization error. Substi-
tuting the definition of Qvk and following the similar steps employed in Eq. 26 gives

ˇ̌
�ki .v/

ˇ̌
D

ˇ̌
ˇ̌@v

k
i

@t
�
1

hd

Z

Ui

@vk.x/

@t
dx

ˇ̌
ˇ̌�c�h�

Z

Ui

1

jxi�xj
�

ˇ̌
ˇ̌@v

k.xi /

@t
�
@vk.x/

@t

ˇ̌
ˇ̌ dx

� c�h�
����
@vk

@t

����
C0;� .DIRd /

� c�h� sup
t

����
@v.t/

@t

����
C0;� .DIRd /

:

Taking the L2 norm of error �ki .v/ and substituting the estimate above delivers

���k.v/
��
L2.DIRd /

� h�c�
p
jDj sup

t

���
�
@v.t/

@t

���
�
C0;� .DIRd /

:

Now we estimate
ˇ̌
�ki .u/

ˇ̌
. Note that the force �rPD�.u/.x/ can be written as

follows

� rPD�.u/.x/ D
4

�dC1!d

Z

H�.x/

!.x/!.y/J .
jy � xj

�
/f 0.jy � xjS.y;xIu/2/

S.y;xIu/
y � x

jy � xj
dy D

4

�!d

Z

H1.0/
!.x/!.x C ��/J .j�j/f 0.� j�j

S.x C ��;xIu/2/S.x C ��;xIu/
�

j�j
d�:

where we substituted @SW � using Eq. 2. In the second step, we introduced the
change in variable y D x C ��.

Let F1 W R ! R be defined as F1.S/ D f .S2/. Then F 01.S/ D f 0.S2/2S .
Using the definition of F1, we have

2Sf 0.� j�jS2/ D
F 01.

p
� j�jS/

p
� j�j

:

Because f is assumed to be positive, smooth, and concave and is bounded far
away, we have the following bound on derivatives of F1

sup
r

ˇ̌
F 01.r/

ˇ̌
D F 01. Nr/ DW C1 (35)
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Fig. 4 Generic plot of F 01 .r/.
jF 01 .r/j is bounded byˇ
ˇF 01 .Nr/

ˇ
ˇ

Fig. 5 Generic plot of
F 001 .r/. At˙Nr , F 001 .r/ D 0.
At˙Ou, F 0001 .r/ D 0

r

F ′′
1 (r)

r̄−r̄

û−û

Fig. 6 Generic plot of
F 0001 .r/. At˙Nu2 and˙Qu2,
F 00001 D 0

r

F ′′′
1 (r)

ū2

−ū2
û

−û

ũ2

−ũ2

sup
r

ˇ̌
F 001 .r/

ˇ̌
D maxfF 001 .0/; F

00
1 .Ou/g DW C2 (36)

sup
r

ˇ
ˇF 0001 .r/

ˇ
ˇ D maxfF 0001 .Nu2/; F

000
1 .Qu2/g DW C3: (37)

where Nr is the inflection point of f .r2/, i.e., F 001 . Nr/ D 0. f0; Oug are the maxima
of F 001 .r/. fNu; Qug are the maxima of F 0001 .r/. By chain rule and by considering
the assumption on f , we can show that Nr; Ou; Nu2; Qu2 exist and the C1; C2; C3 are
bounded. Figures 4, 5, and 6 show the generic graphs of F 01.r/, F

00
1 .r/, and F 0001 .r/,

respectively.
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The nonlocal force �rPD� can be written as

� rPD�.u/.x/

D
2

�!d

Z

H1.0/
!.x/!.x C ��/J .j�j/F 01.

p
� j�jS.x C ��;xIu//

1
p
� j�j

�

j�j
d�:

(38)

To simplify the calculations, we use the following notation

Nu.x/ WD u.x C ��/ � u.x/;

Nu.y/ WD u.y C ��/ � u.y/;

.u � v/.x/ WD u.x/ � v.x/;

and .u � v/.x/ is defined similar to Nu.x/. Also, let

s D � j�j ; e D
�

j�j
:

In what follows, we will come across the integral of type
R
H1.0/

J .j�j/ j�j�˛ d�.
Recall that 0 � J .j�j/ � M for all � 2 H1.0/ and J .j�j/ D 0 for � … H1.0/.
Therefore, let

NJ˛ WD
1

!d

Z

H1.0/
J .j�j/ j�j�˛ d�: (39)

With notations above, we note that S.x C ��;xIu/ D Nu.x/ � e=s. �rPD� can be
written as

�rPD�.u/.x/ D
2

�!d

Z

H1.0/
!.x/!.x C ��/J .j�j/F 01. Nu.x/ � e=

p
s/
1
p
s
ed�:

(40)

We estimate j�rPD�.u/.x/ � .�rPD�.v/.x//j.

j�rPD�.u/.x/ � .�rPD�.v/.x//j

�

ˇ̌
ˇ̌
ˇ
2

�!d

Z

H1.0/
!.x/!.x C ��/J .j�j/

�
F 01. Nu.x/ � e=

p
s/ � F 01. Nv.x/ � e=

p
s/
�

p
s

ed�

ˇ̌
ˇ̌
ˇ

�

ˇ̌
ˇ̌ 2
�!d

Z

H1.0/
J .j�j/

1
p
s

ˇ̌
F 01. Nu.x/ � e=

p
s/ � F 01. Nv.x/ � e=

p
s/
ˇ̌
d�

ˇ̌
ˇ̌

� sup
r

ˇ
ˇF 001 .r/

ˇ
ˇ
ˇ̌
ˇ̌ 2
�!d

Z

H1.0/
J .j�j/

1
p
s

ˇ
ˇ Nu.x/ � e=

p
s � Nv.x/ � e=

p
s
ˇ
ˇ d�

ˇ̌
ˇ̌
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�
2C2

�!d

ˇ̌
ˇ̌
Z

H1.0/
J .j�j/

j Nu.x/ � Nv.x/j
� j�j

d�

ˇ̌
ˇ̌ : (41)

Here we have used the fact that j!.x/j � 1 and for a vector e such that jej D 1,
ja � ej � jaj holds and j˛ej � j˛j holds for all a 2 R

d ; ˛ 2 R.

We use the notation Nuk.x/ WD uk.x C ��/ � uk.x/ and Qu
k
.x/ WD Qu.x C ��/ �

Quk.x/ and choose u D uk and v D Quk in Eq. 41 to find that

ˇ̌
�ki .u/

ˇ̌
D
ˇ̌
ˇ�rPD�. Quk/.xi /C rPD�.uk/.xi /

ˇ̌
ˇ

�
2C2

�!d

ˇ̌
ˇ̌
ˇ
ˇ

Z

H1.0/
J .j�j/

ˇ̌
ˇuk.xiC��/�Quk.xiC��/�.uk.xi /�Quk.xi //

ˇ̌
ˇ

� j�j
d�

ˇ̌
ˇ̌
ˇ
ˇ
:

(42)

Here C2 is the maximum of the second derivative of the profile describing the
potential given by Eq. 36. Following the earlier analysis (see Eq. 26), we find that

ˇ̌
ˇuk.xi C ��/ � Quk.xi C ��/

ˇ̌
ˇ � c�h� sup

t
ku.t/kC0;� .DIRd /

ˇ̌
ˇuk.xi / � Quk.xi /

ˇ̌
ˇ � c�h� sup

t
ku.t/kC0;� .DIRd /:

For reference, we define the constant

NC D
C2

!d

Z

H1.0/
J .j�j/

1

j�j
d�: (43)

We now focus on Eq. 42. We substitute the above two inequalities to get

ˇ̌
�ki .u/

ˇ̌
�
2C2

�2!d

Z

H1.0/
J .j�j/

1

j�j
	ˇˇ̌uk.xi C ��/ � Quk.xi C ��/

ˇ
ˇ̌
C
ˇ
ˇ̌uk.xi / � Quk.xi /

ˇ
ˇ̌

d�

� 4h�c�
NC

�2
sup
t
ku.t/kC0;� .DIRd /:

Therefore, we have

���k.u/
��
L2.DIRd /

� h�

 

4c�
p
jDj
NC

�2
sup
t
ku.t/kC0;� .DIRd /

!

:

This completes the proof of consistency of numerical approximation.
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Stability
Let ek be the total error at the kth time step. It is defined as

ek WD
�
�ek.u/

�
�
L2.DIRd /

C
�
�ek.v/

�
�
L2.DIRd /

:

To simplify the calculations, we define new term 
 as


 WD sup
t

	��
k.u/
��
L2.DIRd /

C
��
k.v/

��
L2.DIRd /

C
���k.u/

��
L2.DIRd /

C
���k.v/

��
L2.DIRd /



:

From our consistency analysis, we know that to leading order


 � Ct�t C
Cs

�2
h� (44)

where,

Ct WD
1

2
sup
t

����
@2u.t/
@t2

����
L2.DIRd /

C
1

2
sup
t

����
@3u.t/
@t3

����
L2.DIRd /

; (45)

Cs WD c
�
p
jDj

"

�2 sup
t

����
@2u.t/
@t2

����
C0;� .DIRd /

C 4 NC sup
t
ku.t/kC0;� .DIRd /

#

: (46)

We take L2 norm of Eqs. 27 and 34 and add them. Noting the definition of 
 as
above, we get

ekC1 � ek C�t
��ekC1.v/

��
L2.DIRd /

C�t


C�t

 
X

i

hd
ˇ̌
ˇ�rPD�. Ouk/.xi /C rPD�. Quk/.xi /

ˇ̌
ˇ
2

!1=2
: (47)

We only need to estimate the last term in the above equation. Similar to the
Eq. 42, we have

ˇ
ˇ̌
�rPD�. Ouk/.xi /C rPD�. Quk/.xi /

ˇ
ˇ̌

�
2C2

�2!d

Z

H1.0/
J .j�j/

1

j�j

ˇ̌
ˇ Ouk.xi C ��/ � Quk.xi C ��/ � . Ou

k.xi / � Quk.xi //
ˇ̌
ˇ d�

D
2C2

�2!d

Z

H1.0/
J .j�j/

1

j�j

ˇ
ˇek.u/.xi C ��/ � ek.u/.xi /

ˇ
ˇ d�

�
2C2

�2!d

Z

H1.0/
J .j�j/

1

j�j

�ˇ̌
ek.u/.xi C ��/

ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌�
d� :
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By ek.u/.x/ we mean evaluation of piecewise extension of set feki .u/gi at x. We
proceed further as follows

ˇ̌
ˇ�rPD�. Ouk/.xi /C rPD�. Quk/.xi /

ˇ̌
ˇ
2

�

�
2C2

�2!d

�2 Z

H1.0/

Z

H1.0/
J .j�j/J .j�j/

1

j�j

1

j�j
�ˇˇek.u/.xi C ��/

ˇ
ˇC

ˇ
ˇek.u/.xi /

ˇ
ˇ� �
ˇ
ˇek.u/.xi C ��/

ˇ
ˇC

ˇ
ˇek.u/.xi /

ˇ
ˇ� d�d�:

Using inequality jabj � .jaj2 C jbj2/=2, we get

�ˇ̌
ek.u/.xi C ��/

ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌� �ˇ̌
ek.u/.xi C ��/

ˇ̌
C
ˇ̌
ek.u/.xi /

ˇ̌�

� 3
	ˇ
ˇek.u/.xi C ��/

ˇ
ˇ2 C

ˇ
ˇek.u/.xi C ��/

ˇ
ˇ2 C

ˇ
ˇek.u/.xi /

ˇ
ˇ2


;

and

X

xi2D

hd
ˇ̌
ˇ�rPD�. Ouk/.xi /C rPD�. Quk/.xi /

ˇ̌
ˇ
2

�

�
2C2

�2!d

�2 Z

H1.0/

Z

H1.0/
J .j�j/J .j�j/

1

j�j

1

j�j

X

xi2D

hd3
	ˇ̌
ek.u/.xi C ��/

ˇ̌2
C
ˇ̌
ek.u/.xi C ��/

ˇ̌2
C
ˇ̌
ek.u/.xi /

ˇ̌2

d�d�:

Since ek.u/.x/ D
P
xi2D

eki .u/�Ui .x/, we have

X

xi2D

hd
ˇ̌
ˇ�rPD�. Ouk/.xi /C rPD�. Quk/.xi /

ˇ̌
ˇ
2

�
.6 NC/2

�4

��ek.u/
��2
L2.DIRd /

: (48)

where NC is given by Eq. 43. In summary Eq. 48 shows the Lipschitz continuity of
the peridynamic force with respect to the L2 norm (see Eq. 16) expressed in this
context as

krPD�. Ouk/.x/ � rPD�. Quk/kL2.DIRd / �
.6 NC/

�2
kek.u/kL2.DIRd /: (49)

Finally, we substitute above inequality in Eq. 47 to get

ekC1 � ek C�t
��ekC1.v/

��
L2.DIRd /

C�t
 C�t
6 NC

�2

��ek.u/
��
L2.DIRd /
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We add positive quantity �t jjekC1.u/jjL2.DIRd / C�t6 NC=�
2jjek.v/jjL2.DIRd / to the

right side of above equation to get

ekC1 � .1C�t6 NC=�2/ek C�tekC1 C�t


)ekC1 �
.1C�t6 NC=�2/

1 ��t
ek C

�t

1 ��t

:

We recursively substitute ej on above as follows

ekC1 �
.1C�t6 NC=�2/

1 ��t
ek C

�t

1 ��t



�

 
.1C�t6 NC=�2/

1 ��t

!2
ek�1 C

�t

1 ��t



 

1C
.1C�t6 NC=�2/

1 ��t

!

� : : :

�

 
.1C�t6 NC=�2/

1 ��t

!kC1
e0 C

�t

1 ��t



kX

jD0

 
.1C�t6 NC=�2/

1 ��t

!k�j
: (50)

Since 1=.1 ��t/ D 1C�t C�t2 CO.�t3/, we have

.1C�t6 NC=�2/

1 ��t
� 1C .1C 6 NC=�2/�t C .1C 6 NC=�2/�t2 CO. NC=�2/O.�t3/:

Now, for any k � T =�t , using identity .1C a/k � expŒka� for a � 0, we have

 
1C�t6 NC=�2

1 ��t

!k

� exp
�
k.1C 6 NC=�2/�t C k.1C 6 NC=�2/�t2 C kO. NC=�2/O.�t3/

�

� exp
�
T .1C 6 NC=�2/C T .1C 6 NC=�2/�t CO.T NC=�2/O.�t2/

�
:

We write above equation in more compact form as follows

 
1C�t6 NC=�2

1 ��t

!k

� exp
�
T .1C 6 NC=�2/.1C�t CO.�t2//

�
:

We use above estimate in Eq. 50 and get the following inequality for ek



Finite Differences and Finite Elements in Nonlocal Fracture Modeling: A Priori. . . 21

ekC1 � exp
�
T .1C 6 NC=�2/.1C�t CO.�t2//

� �
e0 C .k C 1/
�t=.1 ��t/

�

� exp
�
T .1C 6 NC=�2/.1C�t CO.�t2//

� �
e0 C T 
.1C�t CO.�t2/

�
:

where we used the fact that 1=.1 ��t/ D 1C�t CO.�t2/.
Assuming the error in initial data is zero, i.e., e0 D 0, and noting the estimate of


 in Eq. 44, we have

sup
k

ek � exp
�
T .1C 6 NC=�2/

�
T 


and we conclude to leading order that

sup
k

ek � exp
�
T .1C 6 NC=�2/

�
T
�
Ct�t C .Cs=�

2/h�
�
; (51)

Here the constants Ct and Cs are given by Eqs. 45 and 46.This shows the stability
of the numerical scheme and Theorem 2 is proved.

Stability of the Energy for the Semi-discrete Approximation

We first spatially discretize the peridynamics equation (Eq. 6). Let f Oui .t /gi;xi2D
denote the semi-discrete approximate solution which satisfies the following, for all
t 2 Œ0; T � and i such that xi 2 D,

ROui .t / D �rPD�. Ou.t//.xi /C bi .t / (52)

where Ou.t/ is the piecewise constant extension of discrete set f Oui .t /gi and is defined
as

Ou.t;x/ WD
X

i;xi2D

Oui .t /�Ui .x/: (53)

The scheme is complemented with the discretized initial conditions Oui .0/ D u0.xi /
and Ovi .0/ D v0.xi /. We apply boundary condition by setting Oui .t / D 0 for all t and
for all xi … D.

We have the stability of semi-discrete evolution.

Theorem 3 (Energy stability of the semi-discrete approximation). Let f Oui .t /gi
satisfy Eq. 52 and Ou.t/ is its piecewise constant extension. Similarily let Ob.t;x/
denote the piecewise constant extension of fb.t;xi /gi;xi2D . Then the peridynamic
energy E� as defined in Eq. 11 satisfies, 8t 2 Œ0; T �,

E�. Ou/.t/ �
�p

E�. Ou/.0/C TC

�3=2
C

Z T

0

jj Ob.s/jjL2.DIRd /ds

�2
: (54)
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The constant C , defined in Eq. 59, is independent of � and h.

Proof. We multiply Eq. 52 by �Ui .x/ and sum over i and use definition of piecewise
constant extension in Eq. 53 to get

ROu.t;x/ D �r OPD�. Ou.t//.x/C Ob.t;x/

D �rPD�. Ou.t//.x/C Ob.t;x/

C .�r OPD�. Ou.t//.x/C rPD�. Ou.t//.x//

where �r OPD�. Ou.t//.x/ and Ob.t;x/ are given by

�r OPD�. Ou.t//.x/ D
X

i;xi2D

.�rPD�. Ou.t//.xi //�Ui .x/

Ob.t;x/ D
X

i;xi2D

b.t;xi /�Ui .x/:

We define set as follows

�.t;x/ WD �r OPD�. Ou.t//.x/C rPD�. Ou.t//.x/: (55)

We use the following result which we will show after few steps

jj�.t/jjL2.DIRd / �
C

�3=2
: (56)

We then have

ROu.t;x/ D �rPD�. Ou.t//.x/C Ob.t;x/C �.t;x/: (57)

Multiply above with POu.t/ and integrate over D to get

.ROu.t/; POu.t// D .�rPD�. Ou.t//; POu.t//

C . Ob.t/; POu.t//C .�.t/; POu.t//:

Consider energy E�. Ou/.t/ given by Eq. 11 and note the identity Eq. 12, to have

d

dt
E�. Ou/.t/ D . Ob.t/; POu.t//C .�.t/; POu.t//

�
	
jj Ob.t/jjL2.DIRd / C jj�.t/jjL2.DIRd /



jjPOu.t/jjL2.DIRd /;

where we used Hölder inequality in last step. Since PD�.u/ is positive for any u,
we have
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jjPOu.t/jj � 2

r
1

2
jjPOu.t/jj2

L2.DIRd /
C PD�. Ou.t// D 2

p
E�. Ou/.t/:

Using above, we get

1

2

d

dt
E�. Ou/.t/ �

	
jj Ob.t/jjL2.DIRd / C jj�.t/jjL2.DIRd /


p
E�. Ou/.t/:

Let ı > 0 be some arbitrary but fixed real number and let A.t/ D ı C E�. Ou/.t/.
Then

1

2

d

dt
A.t/ �

	
jj Ob.t/jjL2.DIRd / C jj�.t/jjL2.DIRd /


p
A.t/:

Using the fact that 1p
A.t/

d
dt
A.t/ D 2 d

dt

p
A.t/, we have

p
A.t/ �

p
A.0/C

Z t

0

	
jj Ob.s/jjL2.DIRd / C jj�.s/jjL2.DIRd /



ds

�
p
A.0/C

TC

�3=2
C

Z T

0

jj Ob.s/jjL2.DIRd /ds:

where we used bound on jj�.s/jjL2.DIRd / from Eq. 56. Noting that ı > 0 is arbitrary,
we send it to zero to get

p
E�. Ou/.t/ �

p
E�. Ou/.0/C TC

�3=2
C

Z T

0

jj Ob.s/jjds;

and Eq. 54 follows by taking square of above equation.
It remains to show in Eq. 56. To simplify the calculations, we use the following

notations: let � 2 H1.0/ and let

s� D �j�j; e� D
�

j�j
; N!.x/ D !.x/!.x C ��/;

S�.x/ D
Ou.t;x C ��/ � Ou.t;x/

s�
� e� :

With above notations and using expression of �rPD� from Eq. 38, we have for
x 2 Ui

j�.t;x/j D j�rPD�. Ou.t//.xi /C rPD�. Ou.t//.x/j

D

ˇ̌
ˇ
ˇ
2

�!d

Z

H1.0/

J .j�j/
p
s�

�
N!.xi /F

0
1.
p
s�S�.xi // � N!.x/F

0
1.
p
s�S�.x//

�
e�d�

ˇ̌
ˇ
ˇ
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�
2

�!d

Z

H1.0/

J .j�j/
p
s�

ˇ̌
N!.xi /F

0
1.
p
s�S�.xi // � N!.x/F

0
1.
p
s�S�.x//

ˇ̌
d�

�
2

�!d

Z

H1.0/

J .j�j/
p
s�

�ˇ̌
N!.xi /F

0
1.
p
s�S�.xi //

ˇ̌
C
ˇ̌
N!.x/F 01.

p
s�S�.x//

ˇ̌�
d�:

(58)

Using the fact that 0 � !.x/ � 1 and jF 01.r/j � C1, where C1 is supr jF
0
1.r/j, we

get

j�.t;x/j �
4C1 NJ1=2

�3=2
:

where NJ1=2 D .1=!d /
R
H1.0/

J .j�j/j�j�1=2d�.

Taking the L2 norm of �.t;x/, we get

jj�.t/jj2
L2.DIRd /

D
X

i;xi2D

Z

Ui

j�.t;x/j2dx �

 
4C1 NJ1=2

�3=2

!2 X

i;xi2D

Z

Ui

dx

thus

jj�.t/jjL2.DIRd / �
4C1 NJ1=2

p
jDj

�3=2
D

C

�3=2

where

C WD 4C1 NJ1=2
p
jDj: (59)

This completes the proof.

Finite Element Approximation

Let Vh be the approximation of H2
0 .D;R

d / associated with linear continuous
interpolation associated with the mesh Th (triangular or tetrahedral) where h denotes
the size of finite element mesh. Let Ih.u/ be defined as below

Ih.u/.x/ D
X

T2Th

2

4
X

i2NT

u.xi /�i .x/

3

5

whereNT is the set of global indices of nodes associated to finite element T , �i is the
linear interpolation function associated to node i , and xi is the material coordinate
of node i .
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Assuming that the size of each element in the mesh Th is bounded by h, we have
(see, e.g., [Theorem 4.6, Arnold 2011])

jju � Ih.u/jj � ch2jjujj2; 8u 2 H2
0 .DIR

d /: (60)

Projection of Function in FE Space

Let rh.u/ 2 Vh be the projection of u 2 H2
0 .DIR

d /. It is defined as

jju � rh.u/jj D inf
Qu2Vh
jju � Qujj: (61)

It also satisfies the following

.rh.u/; Qu/ D .u; Qu/; 8Qu 2 Vh: (62)

Since Ih.u/ 2 Vh, we get an upper bound on right-hand side term and we have

jju � rh.u/jj � ch
2jjujj2 8u 2 H2

0 .DIR
d /: (63)

Semi-discrete Approximation

Let uh.t/ 2 Vh be the approximation of u.t/ which satisfies the following

.Ruh; Qu/C a
�.uh.t/; Qu/ D .b.t/; Qu/; 8Qu 2 Vh: (64)

We now show that the semi-discrete approximation is stable, i.e., energy at time
t is bounded by initial energy and work done by the body force.

Theorem 4 (Stability of the semi-discrete approximation). The semi-discrete
scheme is energetically stable and the energy E�.uh/.t/, defined in (11), satisfies the
following bound

E�.uh/.t/ �
�p

E�.uh/.0/C
Z t

0

jjb.
/jjd


�2
:

We note that, while proving the stability of semi-discrete scheme corresponding
to nonlinear peridynamics, we do not require any assumption on strain S.y; xI uh/.

Proof. Letting Qu D Puh.t/ in (10) and noting the identity (12), we get

d

dt
E�.uh/.t/ D .b.t/; Puh.t// � jjb.t/jjjjPuh.t/jj
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We also have

jjPuh.t/jj � 2

r
1

2
jjPuhjj2 C PD�.uh.t// D 2

p
E�.uh/.t/

where we used the fact that PD�.u/.t/ is nonnegative. We have

d

dt
E�.uh/.t/ � 2

p
E�.uh/.t/jjb.t/jj:

Fix ı > 0 and let A.t/ D E�.uh.t//C ı. Then, from above equation, we easily have

d

dt
A.t/ � 2

p
A.t/jjb.t/jj )

1

2

d
dt
A.t/

p
A.t/

� jjb.t/jj:

Noting that 1p
a.t/

da.t/

dt
D 2 d

dt

p
a.t/, integrating from t D 0 to 
 , and relabeling 


as t , we get

p
A.t/ �

p
A.0/C

Z t

0

jjb.s/jjds:

Letting ı ! 0 and taking the square of both sides proves the claim.

Central Difference Time Discretization

For illustration, we consider the central difference scheme and present the con-
vergence rate for the central difference scheme for the fully nonlinear problem.
We remark that the extension of these results to the general Newmark scheme is
straightforward. We then consider a linearized peridynamics and demonstrate CFL-
like conditions for stability of the fully discrete scheme.

Let �t be the time step. The exact solution at t k D k�t (or time step k) is
denoted as .uk; vk/, with vk D @uk=@t , and the projection onto Vh at t k is given by
.rh.uk/; rh.vk//. The solution of the discrete problem at time step k is denoted as
.ukh; v

k
h/.

We approximate the initial data on displacement u0 and velocity v0 by their
projection rh.u0/ and rh.v0/. Let u0h D rh.u0/ and v0h D rh.v0/. For k � 1, .ukh; v

k
h/

satisfies, for all Qu 2 Vh,

 
ukC1h � ukh

�t
; Qu

!

D .vkC1h ; Qu/;

 
vkC1h � vkh

�t
; Qu

!

D .�rPD�.ukh/; Qu/C .b
k
h ; Qu/; (65)
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where we denote projection of b.tk/, rh.b.tk//, as bkh . Combining the two equations
delivers central difference equation for ukh. We have

 
ukC1h � 2ukh C uk�1h

�t2
; Qu

!

D .�rPD�.ukh/; Qu/C .b
k
h ; Qu/; 8Qu 2 Vh: (66)

For k D 0, we have 8Qu 2 Vh

�
u1h � u0h
�t2

; Qu

�
D
1

2
.�rPD�.u0h/; Qu/C

1

�t
.v0h; Qu/C

1

2
.b0h; Qu/: (67)

We now show that finite element discretization converges to the exact solution.

Convergence of Approximation

In this section, we establish uniform bound on the discretization error and prove that
approximate solution converges to the exact solution at the rate Ct�t C Csh2=�2

for fixed � > 0. We first compare the exact solution with its projection in Vh
and then compare the projection with approximate solution. We further divide
the calculation of error between projection and approximate solution in two parts,
namely, consistency analysis and error analysis.

Error Ek is given by

Ek WD jjukh � u.tk/jj C jjvkh � v.t
k/jj:

We split the error as follows

Ek �
�
jjuk � rh.u

k/jj C jjvk � rh.v
k/jj

�
C
�
jjrh.u

k/ � ukhjj C jjrh.v
k/ � vkh jj

�
;

where first term is error between exact solution and projections and second term is
error between projections and approximate solution. Let

ekh.u/ WD rh.u
k/ � ukh and ekh.v/ WD rh.v

k/ � vkh (68)

and

ek WD jjekh.u/jj C jje
k
h.v/jj: (69)

Using (63), we have

Ek � Cph
2 C ek; (70)
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where

Cp WD c

�
sup
t

jju.t/jj2 C sup
t

jj
@u.t/

@t
jj2

�
: (71)

We have the following main result.

Theorem 5 (Convergence of the central difference approximation). Let .u; v/
be the exact solution of peridynamics equation in (6). Let .ukh; v

k
h/ be the central

difference approximation in time and piecewise linear finite element approximation
in space solution of (65). If u; v 2 C2.Œ0; T �;H2

0 .DIR
d //, then the scheme is

consistent, and the error Ek satisfies the following bound

sup
k�T =�t

Ek

D Cph
2 C expŒT .1C L=�2/.1C�t CO.�t2//�

�
e0 C T .1C�t CO.�t2//

�
Ct�t C Cs

h2

�2

��
(72)

where constants Cp , Ct , and Cs are given by (71) and (79). The constant L=�2 is
the Lipschitz constant of �rPD�.u/ in L2 (see Theorem 1).

If the error in initial data is zero, then Ek is of the order of Ct�t C Csh2=�2.

Error Analysis
We derive the equation for evolution of ekh.u/ as follows

 
ukC1h � ukh

�t
�
rh.ukC1/ � rh.uk/

�t
; Qu

!

D .vkC1h ; Qu/ �

�
rh.ukC1/ � rh.uk/

�t
; Qu

�

D .vkC1h ; Qu/ � .rh.v
kC1/; Qu/C .rh.v

kC1/; Qu/ � .vkC1; Qu/

C .vkC1; Qu/ �

�
@ukC1

@t
; Qu

�

C

�
@ukC1

@t
; Qu

�
�

�
ukC1 � uk

�t
; Qu

�

C

�
ukC1 � uk

�t
; Qu

�
�

�
rh.ukC1/ � rh.uk/

�t
; Qu

�
:

Using property .rh.u/; Qu/ D .u; Qu/ for Qu 2 Vh and the fact that @u.tkC1/
@t

D vkC1

where u is the exact solution, we get
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ekC1h .u/ � ekh.u/

�t
; Qu

!

D .ekC1h .v/; Qu/C

�
@ukC1

@t
; Qu

�
�

�
ukC1 � uk

�t
; Qu

�
: (73)

Let .
kh .u/; 

k
h .v// be the consistency error in time discretization given by


kh .u/ WD
@ukC1

@t
�

ukC1 � uk

�t
;


kh .v/ WD
@vk

@t
�
vkC1 � vk

�t
:

With above notation, we have

.ekC1h .u/; Qu/ D .ekh.u/; Qu/C�t.e
kC1
h .v/; Qu/C�t.
kh .u/; Qu/: (74)

We now derive the equation for ekh.v/ as follows

 
vkC1h � vkh

�t
�
rh.v

kC1/ � rh.v
k/

�t
; Qu

!

D .�rPD�.ukh/; Qu/C .b
k
h ; Qu/ �

�
rh.v

kC1/ � rh.v
k/

�t
; Qu

�

D .�rPD�.ukh/; Qu/C .b
k; Qu/ �

�
@vk

@t
; Qu

�

C

�
@vk

@t
; Qu

�
�

�
vkC1 � vk

�t
; Qu

�

C

�
vkC1 � vk

�t
; Qu

�
�

�
rh.v

kC1/ � rh.v
k/

�t
; Qu

�

D
�
�rPD�.ukh/CrPD

�.uk/; Qu
�
C .bkh � b.t

k/; Qu/

C

�
@vk

@t
; Qu

�
�

�
vkC1 � vk

�t
; Qu

�
C

�
vkC1 � vk

�t
; Qu

�
�

�
rh.v

kC1/ � rh.v
k/

�t
; Qu

�

D
�
�rPD�.ukh/CrPD

�.uk/; Qu
�
C

�
@vk

@t
�
vkC1 � vk

�t
; Qu

�

where we used the property of rh.u/ and the fact that

.�rPD�.uk/; Qu/C .bk; Qu/ �

�
@vk

@t
; Qu

�
D 0; 8Qu 2 H2

0 .DIR
d /:

We further divide the error in peridynamics force as follows
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�
�rPD�.ukh/CrPD

�.uk/; Qu
�

D
�
�rPD�.ukh/CrPD

�.rh.u
k//; Qu

�
C
�
�rPD�.rh.u

k//CrPD�.uk/; Qu
�
:

We will see in the next section that the second term is related to consistency error in
spatial discretization. Therefore, we define another consistency error term �kper;h.u/
as follows

�kper;h.u/ WD �rPD
�.rh.u

k//CrPD�.uk/: (75)

After substituting the notations related to consistency errors, we get

.ekC1h .v/; Qu/ D .ekh.v/; Qu/C�t.�rPD
�.ukh/CrPD

�.rh.u
k//; Qu/

C�t.
kh .v/; Qu/C�t.�
k
per;h.u/; Qu/: (76)

Since u; v are C2 in time, we can easily show

jj
kh .u/jj � �t sup
t

jj
@2u

@t2
jj and jj
kh .v/jj � �t sup

t

jj
@2v

@t2
jj:

To estimate �kper;h.u/, we note the Lipschitz property of peridynamics force in

L2 norm (see Theorem 1). This leads us to

jj�kper;h.u/jj �
L

�2
jjuk � rh.u

k/jj �
Lc

�2
h2 sup

t

jju.t/jj2; (77)

where we have relabeled the L2 Lipschitz constant L1 as L.
Let 
 be given by


 WD sup
k

	
jj
kh .u/jj C jj


k
h .v/jj C jj�

k
per;h.u/jj




� Ct�t C Cs
h2

�2
: (78)

where

Ct WD jj
@2u

@t2
jj C jj

@2v

@t2
jj and Cs WD Lc sup

t

jju.t/jj2: (79)

In equation for ekh.u/ (see (74)), we take Qu D ekC1h .u/. Note that ekC1h .u/ D
ukh � rh.u

k/ 2 Vh. We have

jjekC1h .u/jj2 D .ekh.u/; e
kC1
h .u//C�t.ekC1h .v/; ekC1h .u//C�t.
kh .u/; e

kC1
h .u//:
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Using the fact that .u; v/ � jjujjjjvjj, we get

jjekC1h .u/jj2 � jjekh.u/jjjje
kC1
h .u/jj C�t jjekC1h .v/jjjjekC1h .u/jj

C�t jj
kh .u/jjjje
kC1
h .u/jj:

Canceling jjekC1h .u/jj from both sides gives

jjekC1h .u/jj � jjekh.u/jj C�t jje
kC1
h .v/jj C�t jj
kh .u/jj: (80)

Similarly, if we choose Qu D ekC1h .v/ in (76) and use the steps similar to above,
we get

jjekC1h .v/jj � jjekh.v/jj C�t jj � rPD
�.ukh/CrPD

�.rh.u
k//jj

C�t
	
jj
kh .v/jj C jj�

k
per;h.u/jj



: (81)

Using the Lipschitz property of the peridynamics force in L2, we have

jj � rPD�.ukh/CrPD
�.rh.u

k//jj �
L

�2
jjukh � rh.u

k/jj D
L

�2
jjekh.u/jj: (82)

After adding (80) and (81) and substituting (82), we get

jjekC1h .u/jj C jjekC1h .v/jj � jjekh.u/jj C jje
k
h.v/jj C�t jje

kC1
h .v/jj

C
L

�2
�t jjekh.u/jj C�t


where 
 is defined in (78).
Let ek WD jjekh.u/jj C jje

k
h.v/jj. Assuming L=�2 � 1, we get

ekC1 � ek C�tekC1 C�t
L

�2
ek C�t


)ekC1 �
1C�tL=�2

1 ��t
ek C

�t

1 ��t

:

Substituting ek recursively in above equation, we get

ekC1 �

�
1C�tL=�2

1 ��t

�kC1
e0 C

�t

1 ��t



kX

jD0

�
1C�tL=�2

1 ��t

�k�j
:

Noting 1=.1 ��t/ D 1C�t C�t2 CO.�t3/,
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1C�tL=�2

1 ��t
� 1C .1C L=�2/�t C .1C L=�2/�t2 CO.L=�2/O.�t3/;

and .1C a�t/k � expŒka�t� � expŒTa� for a > 0, we get

�
1C�tL=�2

1 ��t

�k
� expŒk�t.1C L=�2/C k�t2.1C L=�2/C kO.L=�2/O.�t3/�

� expŒT .1C L=�2/C T�t.1C L=�2/CO.TL=�2/O.�t2/�

D expŒT .1C L=�2/.1C�t CO.�t2//�:

Substituting above estimates, we can easily show that

ekC1 � expŒT .1C L=�2/.1C�t CO.�t2//�
2

4e0 C�t.1C�t CO.�t2//

kX

jD0

1

3

5

� expŒT .1C L=�2/.1C�t CO.�t2//�
�
e0 C k�t.1C�t CO.�t2//


�
:

Finally, we substitute above into (70) to have

Ek � Cph
2 C expŒT .1C L=�2/.1C�t CO.�t2//�

�
e0 C k�t.1C�t CO.�t2//


�
:

After taking sup over k � T =�t , we get the desired result and proof of Theorem 2
is complete.

We now consider the stability of linearized peridynamics model.

Stability Condition for Linearized Peridynamics

In this section, we linearize the peridynamics model and obtain a CFL-like stability
condition. For problems where strains are small, the stability condition for the lin-
earized model is expected to work for nonlinear model. The slope of peridynamics
potential f is constant for sufficiently small strain, and therefore for small strain, the
nonlinear model behaves like a linear model. When displacement field is smooth, the
difference between the linearized peridynamics force and nonlinear peridynamics
force is of the order of �. See [Proposition 4, Jha and Lipton 2017c].

In (5), linearization gives

�rPD�
l .u/.x/ D

4

�dC1!d

Z

H�.x/

!.x/!.y/J �.jy � xj/f 0.0/S.u/ey�xdy: (83)
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The corresponding bilinear form is denoted as a�l and is given by

a�l .u; v/ D
2

�dC1!d

Z

D

Z

H�.x/

!.x/!.y/J �.jy � xj/f 0.0/jy � xjS.u/S.v/dydx:

(84)

We have

.�rPD�
l .u/; v/ D �a

�
l .u; v/:

We now discuss the stability of the FEM approximation to the linearized problem.
We replace �rPD� by its linearization denoted by �rPD�

l in (66) and (67). The
corresponding approximate solution in Vh is denoted by ukl;h where

 
ukC1l;h � 2ukl;h C uk�1l;h

�t2
; Qu

!

D .�rPD�
l .u

k
l;h/; Qu/C .b

k
h ; Qu/; 8Qu 2 Vh (85)

and
 

u1l;h � u0l;h
�t2

; Qu

!

D
1

2
.�rPD�.u0l;h/; Qu/C

1

�t
.v0l;h; Qu/C

1

2
.b0h; Qu/; 8Qu 2 Vh:

(86)

We will adopt the following notations

ukC1h WD
ukC1h C ukh

2
; ukh WD

ukh C uk�1h

2
;

N@tu
k
h WD

ukC1h � uk�1h

2�t
; N@Ct ukh WD

ukC1h � ukh
�t

; N@�t ukh WD
ukh � uk�1h

�t
: (87)

With above notations, we have

N@tu
k
h D
N@Ct ukh C

N@�h ukh
2

D
ukC1h � ukh

�t
:

We also define

N@t tu
k
h WD

ukC1h � 2ukh C uk�1h

�t2
D
N@Ct ukh �

N@�t ukh
�t

:

We introduce the discrete energy associated with ukl;h at time step k as defined by
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E.ukl;h/ WD
1

2

�
jjN@Ct ukl;hjj

2 �
�t2

4
a�l .
N@Ct ukl;h; N@

C
t ukl;h/C a

�
l .u

kC1
l;h ; u

kC1
l;h /

�

Following [Theorem 4.1, Karaa 2012], we have

Theorem 6 (Stability of the central difference approximation of linearized
peridynamics).

Let ukl;h be the approximate solution of (85) and (86) with respect to linearized
peridynamics. In the absence of the body force b.t/ D 0 and for all t , if�t satisfies
the CFL-like condition

�t2

4
sup

u2Vhnf0g

a�l .u; u/

.u; u/
� 1; (88)

then the discrete energy is positive and satisfies

E.ukl;h/ D E.uk�1l;h /; (89)

and we have the stability

E.ukl;h/ D E.u0l;h/: (90)

Proof. Set b.t/ D 0. Noting that a�l is bilinear, after adding and subtracting term
.�t2=4/a�l .

N@t tukl;h; Qu/ to (85), and noting the following

ukl;h C
�t2

4
N@t tu

k
l;h D

ukC1l;h

2
C

ukl;h
2

we get

.N@t tu
k
l;h; Qu/ �

�t2

4
a�l .
N@t tu

k
l;h; Qu/C

1

2
a�l .u

kC1
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We let Qu D N@tukl;h, to write
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It is easily shown that
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and
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Noting that N@tukl;h D .u
kC1
l;h � ukl;h/=�t , we get
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After combining the above equations, we get
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D 0: (91)

We recognize the first term in bracket as E.ukl;h/. We next prove that the second term
is E.uk�1l;h /. We substitute k D k � 1 in the definition of E.ukl;h/ to get

E.uk�1l;h / D
1

2

�
jjN@Ct uk�1l;h jj

2 �
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4
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k
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�
:

We clearly have N@Ct uk�1l;h D
uk�1C1l;h �uk�1l;h

�t
D N@�t ukl;h, and this implies that the second

term in (91) is E.uk�1l;h /. It now follows from (91) that E.ukl;h/ D E.uk�1l;h /.
The stability condition is such that discrete energy is positive. In the definition of

E.ukl;h/, we see that the second term is negative. We now obtain a condition on the
time step that insures the sum of the first two terms is positive, and this will establish
the positivity of E.ukl;h/. Let v D N@Ct ukl;h 2 Vh, and then we require

jjvjj2 �
�t2

4
a�l .v; v/ � 0 )

�t2

4

a�l .v; v/

jjvjj2
� 1 (92)

Clearly if �t satisfies

�t2

4
sup

v2Vhnf0g

a�l .v; v/

jjvjj2
� 1 (93)

then (92) is also satisfied and the discrete energy is positive. Iteration gives E.ukl;h/ D
E.u0l;h/ and the theorem is proved.
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Conclusion

In this chapter we computed the a priori error incurred in finite element and
finite difference discretizations of peridynamics. We show that for finite element
approximation with linear elements, the rate of convergence is better as compared
to rate of convergence of finite difference approximation. A CFL-like condition for
the stability of linearized peridynamics is obtained. For the fully nonlinear problem,
we find that for the semi-discrete approximation the energy at any instant is bounded
by initial energy and work done by the body force.

This model has been analyzed using a quadrature-based finite element approxi-
mation in detail in Jha and Lipton (2017c) for nonlinear nonlocal models and their
linearization assuming an a priori higher regularity of solutions. If one assumes
more regular solutions with three continuous spatial derivatives (no cracks), then
solutions of the nonlinear nonlocal model converge to those of the classical local
elastodynamic model at the rate � uniformly in time in the H1 norm (see (Theorem
5, Jha and Lipton 2017c)). The numerical simulation of problems using finite
differences for this model is carried out in Lipton et al. (2016) and Diehl et al.
(2016). In earlier work (Tian and Du, 2014) develop a framework for asymptotically
compatible finite element schemes for linear problems where the solutions of
the nonlocal problem are known to converge to a unique solution of the local
problem. For the problems treated there, the discrete approximations associated with
asymptotically compatible schemes converge if h! 0 and � ! 0.

For the bond-based prototypical microelastic brittle material model analyzed
here, the uniqueness property for the � D 0 problem is much less clear. The
nonlinear nonlocal model treated in this chapter is an evolution in taking values in
the vector space L2 and can be identified with a sharp fracture evolution as � ! 0

(see Lipton 2014, 2016). The limit evolution is shown to be an element of the vector
space, the space of special functions of bounded deformation referred to as SBD.
The description and properties of this vector space can be found in Ambrosio et al.
(1997). Unlike the linear nonlocal models, we do not necessarily have a unique
sharp fracture evolution in the � D 0 limit. The uniqueness of the limit evolution for
the nonlocal nonlinear model is an open question and remains to be established. The
issue of nonuniqueness arises as the limit evolution is not completely characterized.
What is currently missing is a limiting kinetic relation relating crack growth to crack
driving force. Future work will seek to account for the missing information and
address the issue of uniqueness for the limit problem.
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