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Summary

We quantify the numerical error and modeling error associated with replac-
ing a nonlinear nonlocal bond-based peridynamic model with a local elasticity
model or a linearized peridynamic model away from the fracture set. The non-
local model treated here is characterized by a double-well potential and is a
smooth version of the peridynamic model introduced in the work of Silling.
The nonlinear peridynamic evolutions are shown to converge to the solution of
linear elastodynamics at a rate linear with respect to the length scale 𝜖 of non-
local interaction. This rate also holds for the convergence of solutions of the
linearized peridynamic model to the solution of the local elastodynamic model.
For local linear Lagrange interpolation, the consistency error for the numerical
approximation is found to depend on the ratio between mesh size h and 𝜖. More
generally, for local Lagrange interpolation of order p ≥ 1, the consistency error
is of order hp∕𝜖. A new stability theory for the time discretization is provided
and an explicit generalization of the CFL condition on the time step and its rela-
tion to mesh size h is given. Numerical simulations are provided illustrating the
consistency error associated with the convergence of nonlinear and linearized
peridynamics to linear elastodynamics.
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1 INTRODUCTION

The nonlocal formulation proposed in the work of Silling1 provides a framework for modeling crack propagation inside
solids. The basic idea is to redefine the strain in terms of the difference quotients of the displacement field and allow
for nonlocal forces acting within a finite horizon. The relative size of the horizon with respect to the diameter of the
domain of the specimen is denoted by 𝜖. The force at any given material point is determined by the deformation of all
neighboring material points surrounding it within a radius given by the size of horizon. Computational fracture modeling
using peridynamics features formation and evolution of interfaces associated with fracture, see other works.2-15

In the absence of fracture, earlier work demonstrates the convergence of linear peridynamic models to the local model
of linear elasticity as 𝜖 goes to zero, see the works of Weckner and Emmrich16 and Silling and Lehoucq.17 The convergence
of an equilibrium peridynamic model to the Navier equation in the sense of solution operators is established in the work of
Mengesha and Du.18 Numerical analysis of linear peridynamic models for one-dimensional (1D) bars have been given in
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the work of Bobaru et al8 and Weckner and Emmrich.16 Related approximations of nonlocal diffusion models are discussed
in the works of Tian et al,19 Chen and Gunzburger,20 and Du et al.21 A stability analysis of the numerical approximation
to solutions of linear nonlocal wave equations is given in the work of Guan and Gunzburger.22

In this work, we analyze the discrete approximations to the nonlinear nonlocal model developed in the works of
Lipton.23,24 This model is a smooth version of the prototypical micro-elastic model introduced in the work of Silling,1 see
Section 2. In earlier theoretical work, it has been shown that, in the limit of vanishing nonlocality, this model delivers
evolutions possessing sharp displacement discontinuities associated with cracks. The limiting displacement field evolu-
tion has bounded Griffith fracture energy and away from the fracture set satisfies classic local elastodynamics.23-25 This
model motivates adaptive implementations of peridynamics for brittle fracture. In regions of the body where brittle frac-
ture is anticipated, one would apply the nonlinear nonlocal model, but in regions where no fracture is to be anticipated,
one would like to apply the linear elastic model. In this paper, we will assume that the solution is differentiable and there
is no fracture. Here, we investigate the difference between numerically computed solutions for the nonlinear nonlocal
bond-based model with those of the linearized nonlocal model and those of classic local elastodynamics. The types of non-
local kernels associated with these prototypical models are central to the theory but up until now have not been treated
in the literature.

In this work, we show that the solutions of the nonlinear model converge to classical elastodynamics at a rate that is
linear in 𝜖. We analyze the numerical approximation associated with linear interpolation in space for two cases: (i) when
the size of horizon is fixed and the mesh size h tends to zero, known as h-convergence, and (ii) when the size of the horizon
also tends to zero and the mesh approaches zero faster than the horizon. For the first case, we show that consistency
error is of order O( h

𝜖
) for both nonlinear and linearized models, see Proposition 2. For the second case, we find that the

consistency error for both models is O( h
𝜖
) + O(𝜖), see Proposition 3. These ideas are easily extended to higher-order local

Lagrange interpolation. For pth order local polynomial interpolations p ≥ 1, the consistency error for both models and
case (i) is of order O(hp∕𝜖) and for both models and case (ii) is of order O(hp∕𝜖) + O(𝜖), see Propositions 4 and 5. These
results show that the grid refinement relative to the horizon length scale has more importance than decreasing the horizon
length when establishing convergence to the classical elastodynamics description.

Earlier related work25 analyzes the nonlinear model and establishes the existence of nondifferentiable Hölder continu-
ous solutions. It is shown there that the rate of convergence of the discrete model to the continuum nonlocal model is of the
order h𝛾∕𝜖, where 0 < 𝛾 ≤ 1 is the Hölder exponent. The work presented here shows that we can improve the rate of con-
vergence for this model if we have a priori knowledge on the number of bounded continuous derivatives of the solution.
In this paper, we have restricted the analysis and simulations to the 1D case to illustrate the ideas. For higher-dimensional
problems, the convergence rates are the same, see Section 6, and future work will address the consistency error in higher
dimensions using the same techniques developed here.

A second issue is the coordination of spatial and temporal discretization to insure stability for numerical approximation
of nonlocal models. Here, the stability for the central difference in time approximation to the linearized model is consid-
ered. Analysis of the linearized peridynamic nonlocal model shows that the stability is given by a new explicit condition
that converges to the well-known CFL condition as 𝜖 → 0, see Theorem 3. One no longer has an explicit stability condi-
tion for the nonlinear model. However, it is found that the semidiscrete approximation of the nonlinear model is stable
in the energy norm, see our other work.25

In Section 5, we present numerical simulations that confirm the error estimates for both linearized and nonlinear
peridynamics. The numerical experiments show that the discretization error can be reduced by choosing the ratio h∕𝜖
suitably small for every choice of 𝜖 as 𝜖 → 0, see Figure 4. We verify the convergence rates by simulating the peridynamic
model long enough to include the boundary effects due to wave reflection in Section 5.1. Our numerical studies confirm
that the solutions of linear and nonlinear peridynamics are indistinguishable for sufficiently small horizon 𝜖.

The analysis of mechanical and mathematical aspects of peridynamic models different than those treated here can be
found in other works.9,10,26-31 A full accounting of the peridynamics literature lies beyond the scope of this paper; however,
several themes and applications are covered in the recent handbook.32

The organization of this paper is as follows. In Section 2, we introduce the class of nonlocal nonlinear potentials and
describe the convergence of peridynamic models to classical elastodynamics. In Section 3, we introduce the finite element
approximation of the model and present bounds on the discretization error. In Section 4, we consider the central difference
in time scheme and obtain the stability condition on Δt as function of 𝜖 and h. In Section 5, we present the numerical
simulations. In Section 6, we present the convergence of the model in higher dimensions. The proofs of the theorems are
given in Section 7, and we provide our conclusions in Section 8.
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2 NONLOCAL EVOLUTION AND ELASTODYNAMICS

The mathematical formulation for the nonlocal model is presented in this section. We exhibit the convergence rate of
nonlocal solutions to the solution to linear elastodynamics in the limit of vanishing peridynamic horizon. A convergence
rate is also provided for the linearized nonlocal model. The convergence rate for the nonlocal kernels treated here has not
been addressed before in the literature.

2.1 The nonlocal model
We consider the nonlocal potentials introduced in the works of Lipton.23,24 Let D ∶= [a, b] ⊂ R be a bounded material
domain in one dimension and J = [0,T] be an interval of time. The nonlocal boundary denoted by 𝜕D𝜖 is intervals of
diameter 2𝜖 on either side of D and given by (a − 𝜖, a + 𝜖) ∪ (b − 𝜖, b + 𝜖). The strain S for the 1D peridynamic model is
given by the difference quotient

S(𝑦, x;u) ∶= u(𝑦) − u(x)|𝑦 − x| .

The nonlocal force is given in terms of the nonlinear two-point interaction potential W𝜖 defined by

W 𝜖(S, 𝑦 − x) = 2J𝜖(|𝑦 − x|)
𝜖|𝑦 − x| 𝑓

(|𝑦 − x|S2) ,
where 𝑓 ∶ r ∈ R+ → R is positive, smooth, and concave with following properties:

lim
r→0+

𝑓 (r)
r

= 𝑓 ′(0) and lim
r→∞

𝑓 (r) = 𝑓∞ < ∞. (1)

The potential W𝜖(S, y− x) is of double-well type and convex near the origin, where it has one well, the second well is at ∞
and associated with the horizontal asymptote W𝜖(∞, y−x), see Figure 1. The function J𝜖(|y−x|) influences the magnitude
of the nonlocal force due to y on x. We define J𝜖 by rescaling J(|𝜉|), ie, J𝜖(|𝜉|) = J(|𝜉|∕𝜖). The influence function J is zero
outside the ball [−1, 1] and satisfies 0 ≤ J(|𝜉|) ≤ M for all 𝜉 ∈ [−1, 1].

The force of two-point interaction between x and y is derived from the nonlocal potential and given by 𝜕SW𝜖(S, y − x),
see Figure 2. For small strains, the force is linear and elastic and then softens as the strain becomes larger. The critical

FIGURE 1 Two-point potential W𝜖(S, y − x) as a function of strain S for fixed y − x

FIGURE 2 Nonlocal force 𝜕SW𝜖(S, y − x) as a function of strain S for fixed y − x. Second derivative of W𝜖(S, y − x) is zero for
S = Sc ∶= ±r̄∕

√|𝑦 − x|
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FIGURE 3 Prototypical micro-elastic bond model in the work of Silling1 as a function of strain S for fixed y − x. Here, the nonlocal force
drops to zero at S = Sc

strain, for which the force between x and y begins to soften, is given by Sc(𝑦, x) ∶= r̄∕
√|𝑦 − x| and the force decreases

monotonically for |S(𝑦, x;u)| > Sc.

Here, r̄ is the inflection point of r ∶→ f(r2) and is the root of following equation:

𝑓 ′(r2) + 2r2𝑓 ′′(r2) = 0.

The nonlocal force −𝛁PD𝜖 is defined by

−𝛁PD𝜖(u)(x) = 1
2𝜖

x+𝜖

∫
x−𝜖

𝜕SW 𝜖(S, 𝑦 − x)d𝑦

= 2
𝜖2

x+𝜖

∫
x−𝜖

J(|𝑦 − x|∕𝜖)𝑓 ′(|𝑦 − x|S(𝑦, x;u)2)S(𝑦, x;u)d𝑦.

This force-strain model is a smooth version of the prototypical micro-elastic model,1 which exhibits an abrupt drop in the
force after a critical strain, see Figure 3.

Similarly, we denote −𝛁PD𝜖

l (u)(x) as the linearized peridynamic force at x, given by

−𝛁PD𝜖

l (u)(x) =
2
𝜖2

x+𝜖

∫
x−𝜖

J(|𝑦 − x|∕𝜖)𝑓 ′(0)S(𝑦, x;u)d𝑦.

The corresponding linearized local model is characterized by the Young's modulus C given by

C =

1

∫
−1

J(|z|)𝑓 ′(0)|z|dz

= 1
𝜖2

x+𝜖

∫
x−𝜖

J(|𝑦 − x|∕𝜖)𝑓 ′(0)|𝑦 − x|d𝑦, ∀x, 𝜖 > 0.

(2)

2.2 The dynamic evolution
We now state the initial boundary problem for the three types of evolutions: the first is given by the nonlinear nonlocal
model, the second is given by the linearized nonlocal model, and the third is given by the classic local linear elastic model.
Let u𝜖 be the solution of the peridynamic equation of evolution, u𝜖

l be the solution of the linearized peridynamic equation
of evolution, and u be the solution of elastodynamic equation of evolution with Young's modulus C. For comparison of
u𝜖

l and u𝜖 with u, we assume u to be extended by zero outside D. The displacements u𝜖 , u𝜖

l , and u satisfy the following
evolution equations, for all (x, t) ∈ D × J, described by

𝜌ü(t, x) = Cuxx(t, x) + b(t, x), (3)

𝜌ü𝜖(t, x) = −𝛁PD𝜖(u𝜖(t))(x) + b(t, x), (4)

𝜌ü𝜖

l (t, x) = −𝛁PD𝜖

l

(
u𝜖

l (t)
)
(x) + b(t, x), (5)
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where b(t, x) is a prescribed body force and the mass density 𝜌 is taken to be constant. The boundary conditions are
given by

u𝜖(t, x) = 0 and u̇𝜖(t, x) = 0, ∀t ∈ J,∀x ∈ 𝜕D𝜖,

and the same boundary conditions hold for u𝜖

l and u. The initial condition is given by

u𝜖(0, x) = g(x) and u̇𝜖(0, x) = h(x), ∀x ∈ D,

with g = h = 0 outside some fixed subset D′ of D. The same initial condition also holds for u𝜖

l and u. For future reference,
we denote the width of the layer D∖D′ by 𝛿.

2.3 Convergence of nonlocal models in the limit of vanishing horizon
In this section, we provide convergence rates that show that the solution u𝜖 of the peridynamic equation converges, in
the limit 𝜖 → 0, to the solution u of the elastodynamic equation. The model treated here was considered earlier but
for solutions that may not be differentiable and exhibit discontinuities.23,24 Convergence was established for this case;
however, no convergence rate is available. For linear nonlocal models with kernels different than the ones treated here,
the limiting behavior has been identified by several investigators in the peridynamics literature, see other works.17,28,30,33

We first provide estimates for the difference between the peridynamics force, the linearized peridynamics force, and
the elastodynamics force. With these estimates in hand, we then present the rate of convergence of the solution of the
nonlinear nonlocal evolution to the solution of the local linear elastic wave equation. In what follows, Cn(D) is the space
of functions with n continuous derivatives on D.

Proposition 1. (Control on the difference between peridynamic force and local elastic force)
If u ∈ C3(D) and

sup
x∈D

|uxxx(x)| < ∞,

then
sup
x∈D

|||−𝛁PD𝜖(u)(x) −
(
−𝛁PD𝜖

l (u)(x)
)||| = O(𝜖), (6)

sup
x∈D

|||−𝛁PD𝜖

l (u)(x) −Cuxx(x)
||| = O(𝜖), (7)

so
sup
x∈D

|−𝛁PD𝜖(u)(x) −Cuxx(x)| = O(𝜖). (8)

If u ∈ C4(D) and
sup
x∈D

|uxxxx(x)| < ∞, (9)

then
sup
x∈D

|||−𝛁PD𝜖

l (u)(x) − Cuxx(x)
||| = O(𝜖2). (10)

We introduce the usual H1(D) norm of a function f defined in D by

||𝑓 ||1 =

√√√√∫
D

|𝑓 (x)|2 dx + ∫
D

|𝑓x(x)|2 dx.

We now state the theorem that shows that u𝜖 → u with rate 𝜖 in the H1(D) norm uniformly in time.

Theorem 1. (Convergence of nonlinear peridynamics to the linear elastic wave equation in the limit that the horizon
goes to zero)
Let e𝜖 ∶= u𝜖 −u, where u𝜖 is the solution of Equation (4) and u is the solution of Equation (3). Suppose u𝜖(t) ∈ C4(D), for
all 𝜖 > 0 and t ∈ [0,T]. Suppose there exists C1 > 0, C1 independent of the size of horizon 𝜖, such that

sup
𝜖>0

{
sup

(x,t)∈D×J
|u𝜖

xxxx(t, x)|} < C1 < ∞.
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Then, for 𝜖 < 𝛿, there is a constant C2 > 0 independent of 𝛿, 𝜖, such that

sup
t∈[0,T]

⎧⎪⎨⎪⎩∫D
𝜌|ė𝜖(t, x)|2dx + ∫

D

C|e𝜖x(t, x)|2dx
⎫⎪⎬⎪⎭
≤ C2𝜖

2,

so u𝜖 → u in the H1(D) norm at the rate 𝜖 uniformly in time t ∈ [0,T].

A stronger convergence result holds for the solutions u𝜖

l (t) of the family of linearized peridynamic equations.

Theorem 2. (Convergence of linearized peridynamics equation to the linear elastic wave equation in the limit that
the horizon goes to zero)
Let e𝜖l ∶= u𝜖

l − u, where u𝜖

l is the solution of Equation (5) and u is the solution of Equation (3). Suppose u𝜖

l (t) ∈ C4(D),
for all 𝜖 > 0 and t ∈ [0,T]. Suppose there exists C1 > 0, C1 independent of the size of horizon 𝜖, such that

sup
𝜖>0

{
sup

(x,t)∈D×J

|||(u𝜖

l

)
xxxx(t, x)|||

}
< C1 < ∞.

Then, there is a constant C2 > 0 independent of 𝛿, 𝜖, such that

sup
t∈[0,T]

⎧⎪⎨⎪⎩∫D
𝜌
|||ė𝜖l (t, x)|||2

dx + ∫
D

C
|||(e𝜖l

)
x(t, x)|||2

dx
⎫⎪⎬⎪⎭
≤ C2𝜖

4,

so u𝜖

l → u in the H1(D) norm at the rate 𝜖2 uniformly in time t ∈ [0,T].

The proofs of Proposition 1 and Theorems 1 and 2 are given in Section 7. We now discuss the finite element approxi-
mation of the peridynamic model and show the consistency of the discretization for both piecewise constant and linear
interpolation.

3 DISCRETE APPROXIMATION

In this section, we introduce the spatial discretization for the peridynamics evolution. To introduce the ideas, we use a
linear continuous interpolation over uniform mesh and write the equation of motion of displacement at the mesh points.
This type of approximation has been analyzed in the work of Tian and Du34 in the 1D setting and further extended to
higher dimensions in the works Tian et al19,35 for a significant class quasi-static problems with linear kernels different
than the ones treated in this investigation.

Let h characterize the mesh size and be given by the distance between grid points. We let D and 𝜕D𝜖 denote the closure
of the sets D and 𝜕D𝜖 . To fix ideas, we will suppose that D and 𝜕D𝜖 contain an integral number of elements of the mesh. Let
Dh = D ∩ hZ and 𝜕D𝜖,h = 𝜕D𝜖 ∩ hZ, and let K = {i ∈ Z ∶ ih ∈ D} and K𝜖 = {i ∈ Z ∶ ih ∈ 𝜕D𝜖}. Here, K𝜖 corresponds to
the list of nodes located inside the closure of the nonlocal boundary 𝜕D𝜖 . We assume xi = ih. We define the interpolation
operator Ih[·], for a given function g ∶ D ∪ 𝜕D𝜖 → R, as follows:

h [g(𝑦)] =
∑

i∈K∪K𝜖

g(xi)𝜙i(𝑦),

where 𝜙i(·) is the interpolation function associated to the node i and {𝜙i}i∈K∪K𝜖
is a partition of unity, ie,∑

i∈K∪K𝜖

𝜙i(x) = 1

for all x ∈ D ∪ 𝜕D𝜖 . In order to expedite the presentation, we assume that the diameter of nonlocal interaction 2𝜖 is fixed
and always contains an integral number of grid points 2m+ 1. For this choice, 𝜖 = mh, where m increases as h decreases.
When we investigate m convergence, we will allow both 𝜖 and h to decrease.
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We also consider extensions of discrete sets defined on the nodes K ∪ K𝜖 . We write the function v(t, xi) defined at node
xi as vi(t) and define the discrete set {vi(t)}K∪K𝜖

. The function û𝜖

h(t) is the extension of discrete set {û𝜖
i (t)}K∪K𝜖

using the
interpolation functions and is defined by

û𝜖

h(t) = E
[{

û𝜖
i (t)

}
K∪K𝜖

]
=

∑
i∈K∪K𝜖

û𝜖
i (t)𝜙i(x), ∀x ∈ D ∪ 𝜕D𝜖.

We also have the body force bh(t) given by the extension of discrete set {bi(t)}K∪K𝜖
defined by

bh(t) = E
[
{bi(t)}K∪K𝜖

]
=

∑
i∈K∪K𝜖

bi(t)𝜙i(x), ∀x ∈ D ∪ 𝜕D𝜖.

Let û𝜖

h(t) be the solution of following equation:

𝜌 ̈̂u𝜖

i (t) = −𝛁PD𝜖
(

û𝜖

h(t)
)
(xi) + bi(t), (11)

with initial condition defined at the nodes given by

û𝜖
i (0) = 𝑓 (xi), ̇̂u𝜖

i (0) = g(xi), ∀i ∈ K,

or equivalently given by the extension of the discrete sets

û𝜖

h(0) = 𝑓h, ̇̂u𝜖

h(0) = gh, ∀i ∈ K, (12)

and homogeneous boundary condition given by

û𝜖
i (t) = 0, ̇̂u𝜖

i (t) = 0, ∀i ∈ K𝜖. (13)

Similarly, the discrete set {û𝜖

l,i(t)}i∈K∪K𝜖
, with subscript l, is extended by interpolation to the function û𝜖

l,h(t) =
E[{û𝜖

l,i(t)}i∈K∪K𝜖
] and satisfies the linear peridynamic equation

𝜌 ̈̂u𝜖

l,i(t) = −𝛁PD𝜖

l

(
û𝜖

l,h(t)
)
(xi) + bi(t)

= 2
𝜖2

∑
𝑗∈K∪K𝜖 ,

𝑗≠i

𝑓 ′(0)
(

û𝜖

l,𝑗(t) − û𝜖

l,i(t)
) xi+𝜖

∫
xi−𝜖

𝜙𝑗(𝑦)J(|𝑦 − xi|∕𝜖)|𝑦 − xi| d𝑦 + bi(t),
(14)

with initial conditions (see Equation (12)) and boundary conditions (see Equation (13)).
We now write Equation (14) in vector form, and in the next section, we will use this representation to provide an explicit

stability constraint on time step and mesh size for the linear peridynamic evolution. Let Ul,h(t) = (û𝜖

l,i(t))i∈K be the vector
of the approximate solution evaluated at the nodes. Then, Equation (14) can be written as

𝜌Ül,h(t) = AUl,h(t) + B(t), (15)

where aij are defined as

ai𝑗 =
⎧⎪⎨⎪⎩

āi𝑗 , if 𝑗 ≠ i,
−
∑

k≠i,
k∈K∪K𝜖

āik, if 𝑗 = i, (16)

where

āi𝑗 =
2
𝜖2 𝑓

′(0)

xi+𝜖

∫
xi−𝜖

𝜙𝑗(𝑦)J(|𝑦 − xi|∕𝜖)|𝑦 − xi| d𝑦. (17)

B(t) = (bi(t))i∈K is the body force vector with
bi(t) = b(t, xi).

We point out that nonzero nonlocal boundary conditions can be prescribed on 𝜕D𝜖 . To do this, use the standard approach
and include the known displacements corresponding to the nonlocal boundary K𝜖 on the right-hand side vector according
to the rule

bi(t) = b(t, xi) +
∑

𝑗∈K𝜖 ,𝑗≠i
āi𝑗 û𝜖

l,𝑗 .

To fix ideas, we first use linear continuous interpolation functions 𝜙i(x).
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Linear continuous interpolation: Let i ∈ K ∪ K𝜖 . We define 𝜙i(x) as follows:

𝜙i(x) =
⎧⎪⎨⎪⎩

0, if x ∉ [xi−1, xi+1],
x−xi−1

h
, if x ∈ [xi−1, xi],

xi+1−x
h

, if x ∈ [xi, xi+1],

with xi+1 − xi = h, i ∈ K ∪ K𝜖 and ∑
i∈K∪K𝜖

𝜙i = 1,

and for g ∈ C2(D), we have |h[g(x)] − g(x)| ≤ sup
z

||g′′(z)|| h2.

3.1 Consistency error
We present bounds on the consistency error due to discretization for both the nonlinear peridynamic force and the lin-
earized peridynamic force. The error is seen to depend on the ratio of mesh size to nonlocality, ie, h∕𝜖. The numerical
examples given in Section 5 for both linear and nonlinear nonlocal models corroborate this trend.

h-convergence: We keep 𝜖 fixed and estimate the error with respect to mesh size h.

Proposition 2. (Consistency error: peridynamic approximation)
For linear continuous interpolation, if u ∈ C3(D) and uxxx is bounded on D, then, for linearized peridynamic force,
we have

sup
i∈K

|||𝛁PD𝜖

l (h[u])(xi) − 𝛁PD𝜖

l (u)(xi)
||| = O(h∕𝜖), (18)

and for the nonlinear peridynamic force, we have

sup
i∈K

|𝛁PD𝜖 (h[u]) (xi) − 𝛁PD𝜖(u)(xi)| = O(h∕𝜖). (19)

We now examine what happens as 𝜖 goes to zero. Combining Propositions 1 and 2 and applying the triangle inequality
gives the following.

Proposition 3. (Consistency error: peridynamic approximation in the limit 𝜖→0)
For linear continuous interpolation, if u ∈ C3(D) with uxxx bounded, then, for the linearized peridynamic force, we have

sup
i∈K

|||−𝛁PD𝜖

l (h[u])(xi) −Cuxx(xi)
||| = O(𝜖) + O(h∕𝜖), (20)

and for the nonlinear peridynamic force, we have

sup
i∈K

|−𝛁PD𝜖 (h[u]) (xi) −Cuxx(xi)| = O(𝜖) + O(h∕𝜖). (21)

This proposition shows that the consistency error for both nonlinear and linearized nonlocal models is controlled by
the ratio of the mesh size to the horizon. This ratio must decrease to zero as the horizon goes to zero in order for the
consistency error to go to zero. We conclude pointing out that the linearized kernels treaded in this work are different
than those ones considered in the work of Tian and Du.34

3.2 Consistency error for higher-order interpolation approximation
It is easy to improve the convergence results if we assume more differentiability for the solution. We will assume that we
have uniform control of p + 1 bounded derivatives of solutions with respect to 𝜖 and discretize using higher-order local
Lagrangian shape functions. In this section, we estimate the consistency error for this case. Let h be the mesh size and p be
the order of interpolation. The discretization of the domain is now Dh = D∩(h∕𝑝)Z and 𝜕D𝜖,h = 𝜕D𝜖∩(h∕𝑝)Z. Let K ∶= {i ∈
Z ∶ i(h∕𝑝) ∈ D̄} and K𝜖 ∶= {i ∈ Z ∶ i(h∕𝑝) ∈ ̄𝜕D𝜖}. The mesh points are denoted by xi = ih∕p, the interpolation operator
is denoted by h[·], and the extension operator is denoted by E[·]. The approximate nonlinear peridynamic equation (11)
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and approximate linearized peridynamic equation (14) are now defined for the pth order interpolations {𝜙i}. We now
state the following results.

Proposition 4. (Consistency error: peridynamic approximation)
For continuous interpolation of order p, if u ∈ C p+1(D) and the (p + 1)th derivative of u is bounded on D, then, for the
linearized peridynamic force, we have

sup
i∈K

|||𝛁PD𝜖

l (h[u])(xi) − 𝛁PD𝜖

l (u)(xi)
||| = O(h𝑝∕𝜖), (22)

and for the nonlinear peridynamic force, we have

sup
i∈K

|𝛁PD𝜖 (h[u]) (xi) − 𝛁PD𝜖(u)(xi)| = O(h𝑝∕𝜖). (23)

Next, we examine what happens as we send 𝜖 to zero. Combining Propositions 1 and 4 and applying the triangle
inequality gives the following.

Proposition 5. (Consistency error: peridynamic approximation in the limit 𝜖→0)
For continuous interpolation of order p, if u ∈ C p+1(D) with (p + 1)th derivative of u bounded, then, for the linearized
peridynamic force, we have

sup
i∈K

|||−𝛁PD𝜖

l (h[u])(xi) −Cuxx(xi)
||| = O(𝜖) + O(h𝑝∕𝜖), (24)

and for the nonlinear peridynamic force, we have

sup
i∈K

|−𝛁PD𝜖 (h[u]) (xi) −Cuxx(xi)| = O(𝜖) + O(h𝑝∕𝜖). (25)

Let 𝑝̄ = max{𝑝+ 1, 4}. In case of linear peridynamics and u ∈ C𝑝̄(D) such that 𝑝̄th derivative of u is bounded, we have

sup
i∈K

|||−𝛁PD𝜖

l (h[u])(xi) − Cuxx(xi)
||| = O(𝜖2) + O(h𝑝∕𝜖). (26)

For p = 1, we need u ∈ C3(D) (see Proposition 3). The outlines of proofs are provided in Section 7.

4 THE CENTRAL DIFFERENCE SCHEME AND STABILITY ANALYSIS

In this section, we consider the central difference time discretization of the semidiscrete peridynamic equation (11). We
recover a new stability condition for the linearized peridynamic equation, see Equation (28). An explicit stability condi-
tion relating Δt to h is obtained in terms of the linearized peridynamic material parameters. It is similar to the standard
CFL condition for central difference approximation of 1D wave equation. We point out that the stability of the linearized
peridynamic solution can imply the stability of nonlinear peridynamic solution. This implication is physically reason-
able provided that the acceleration and body force are sufficiently small and so that one can approximate nonlinear
peridynamics by its linearization.

Let Δt be the time step and the field u(t) at time step kΔt is denoted by uk. To illustrate ideas, we will assume 𝜌 = 1.
For the linearized peridynamics, we characterize the matrix A associated with the spatial discretization equation (15). We
introduce a special class of matrices.

Definition 1. An M matrix has negative off-diagonal elements mij, i ≠ j, and the diagonal elements satisfy mii ≥∑
j≠i mij for all i.
The stability of the numerical scheme is based on the following property of A.

Lemma 1. (Properties of A matrix)
For linear interpolations, the square matrix −A of size |K| × |K| is a Stieltjes matrix, ie, it is a nonsingular symmetric M
matrix. Therefore, the eigenvalues of −A of is real and positive.

Proof. −A is clearly M matrix as its off-diagonal terms are negative, and diagonal terms satisfy −aii ≥ ∑
𝑗≠i − ai𝑗

for all i. To prove that an M matrix is nonsingular, we apply theorem 2.3 in chapter 6 in the work of Abraham and
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Plemmons.36 From the definition of −A, we find that

−aii =
∑
i≠𝑗

−ai𝑗 , i = 1, … ,n, −aii >

i−1∑
𝑗=1

−ai𝑗 , i = 2, … ,n,

and this is easily seen to be condition M37 of theorem 2.3 and we conclude that −A is nonsingular. The symmetry of
−A is a straightforward consequence of formula (17).

Central difference time discretization: For 𝜌 = 1, the spatially discretized evolution equations for linearized
peridynamics given by Equation (15) are written as

Ül,h(t) = AUl,h(t) + B(t).

We now additionally discretize in time using the central difference scheme. Let Uk
l,h ∶= {û𝜖,k

l,i }i∈K denote the discrete
displacement field at time step k. Here, we use the subscript “l” for linear peridynamic and superscript “𝜖” to highlight
that the solution corresponds to size of horizon 𝜖. In what follows, we will assume that no body force and the dynamics
are driven by the initial conditions. Since we have the zero Dirichlet boundary condition, we know that the displacement
at nodes i ∈ K𝜖 is zero for all time steps. We assume k ≤ T∕Δt, and the horizon is given by 𝜖 = mh∕2, where m is a positive
integer. The discretized dynamics is given by the solution {Uk

l,h} of the following equation:

Uk+1
l,h − 2Uk

l,h + Uk−1
l,h

Δt2 = AUk
l,h,

or after elementary manipulation
Uk+1

l,h = −Uk−1
l,h + (2 + Δt2A)Uk

l,h. (27)

Theorem 3. (Stability criterion for the central difference scheme)
Recall the elastic constant C given by Equation (2), f ′(0) given by Equation (1), and M = max0<r≤1{J(r)}. Then, the
central difference scheme equation (27), in the absence of body forces, is stable as long as Δt satisfies

Δt ≤ h√
C + 2𝑓 ′(0)Mh2

𝜖2

. (28)

Remark. The stability condition for the linear elastic wave equation is given by the CFL condition Δt ≤ h√
C

, where h
gives the distance between mesh points.

Proof. Let (𝛾 i, 𝝂i) be an eigenpair of A. Let 𝜆i = −𝛾 i, then 𝜆i > 0, and let 𝜆 = maxi{𝜆i}. Substitute Uk
l,h = 𝜉k

𝝂, where 𝜉

is some real number, and by 𝜉k, we mean the kth power of 𝜉, into Equation (27), to obtain the characteristic equation

𝜉2 − 2𝜃𝜉 + 1 = 0,

where 𝜃 = 1−1∕2𝜆iΔt2. The solution of the quadratic equation gives two roots: 𝛿1 = 𝜃+
√
𝜃2 − 1 and 𝛿2 = 𝜃−

√
𝜃2 − 1.

We need |𝛿| ≤ 1 for stability. Since 𝛿1𝛿2 = 1, the only possibility is when |𝛿1| = |𝛿2| = 1. This is satisfied for all
eigenmodes when

|𝜃| ≤ 1

⇒ Δt ≤ 2√
𝜆
≤ 2√

𝜆i
.

A lower estimate on 1∕
√
𝜆 follows from Gershgorin's circle theorem.

Theorem 4. Any eigenvalue of A lies inside at least one of the disks

|𝛾 − aii| < ∑
i≠𝑗

|ai𝑗|. (29)
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All eigenvalues of A lie on the negative real axis, and we provide an upper estimate on the largest magnitude of the
eigenvalues depending only on the mesh size h given by the distance between interpolation points and the horizon 𝜖 = mh.
For this case, it follows from Equations (29) and (16) that

𝜆 < 2
∑
i≠𝑗

ai𝑗 .

Writing out the sum and using the definition of the interpolating functions and their partition of unity properties, we get

∑
i≠𝑗

ai𝑗 =
2𝑓 ′(0)
𝜖2

xi+1

∫
xi−1

1
h

J(|𝑦 − xi|∕𝜖)d𝑦

+2𝑓 ′(0)
𝜖2

xi−1

∫
xi−𝜖

J(|𝑦 − xi|∕𝜖)|𝑦 − xi| d𝑦

+2𝑓 ′(0)
𝜖2

xi+𝜖

∫
xi+1

J(|𝑦 − xi|∕𝜖)|𝑦 − xi| d𝑦.

Here, we make use of the identities
1 =

∑
𝑗∈I+

𝜙𝑗(𝑦), 𝑦 ∈ [xi+1, xi + 𝜖],

1 =
∑
𝑗∈I−

𝜙𝑗(𝑦), 𝑦 ∈ [xi − 𝜖, xi−1],

where I+ = { j ∶ xj ∈ [xi+1, xi + 𝜖]} and I− = { j ∶ xj ∈ [xi − 𝜖, xi−1]}. For y < xi−1 and xi+1 < y, we have h < |y − xi| and
1 < |y − xi|∕h and we have the estimate

∑
i≠𝑗

ai𝑗 ≤ 2 C

h2 + 2𝑓 ′(0)
h𝜖2

xi+1

∫
xi−1

J(|𝑦 − xi|∕𝜖)d𝑦

≤ 2 C

h2 + 4
𝜖2 𝑓

′(0)M,

and a lower bound now follows on 1∕
√
𝜆. Simple manipulation then delivers Equation (28).

5 NUMERICAL SIMULATION

In this section, we present numerical simulations that independently corroborate the theoretical bounds on the consis-
tency error given in Section 3.1. We start in Section 5.1 and pose the nondimensional initial boundary value problem.
We then perform a numerical study of the h-convergence in Section 5.2 and the convergence with respect to the ratio
h∕𝜖 in Section 5.3. We compare the numerical simulations for the nonlinear and linear nonlocal models with local linear
elastodynamics.

5.1 Nondimensional peridynamic equation
Let [0,L] be the bar with length L in meters. Let [0,T] be the time domain in units of seconds. Given a dimensionless
influence function J(r), r ∈ [0, 1], the bond force f ′(0) is in the units of N/m2, and the density 𝜌 in units of kg/m3, the wave
velocity in an equivalent linear elastic medium can be determined by

𝜈0 =
√
𝑓 ′(0)M∕𝜌, M ∶= 2∫

1

0
J(r)rdr.

We introduce the time scale T0 ∶= L∕𝜈0. Then, a wave in the elastic media with elastic constant C = M𝑓 ′(0) requires T0
seconds to reach from one end of the bar to the other end.
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We let x̄ = x∕L for x ∈ [0,L], and t̄ = t∕T0. We define nondimensional solution ū(x̄, t̄) ∶= u(Lx̄,T0 t̄)∕L. Let 𝜖 ∶= 𝜖∕L be
nondimensional size of horizon. Then, ū satisfies

̈̄u(t̄, x̄) = 2
𝜖2

x̄+𝜖

∫̄
x−𝜖

𝑓 ′ (|𝑦̄ − x̄|S̄2) S̄(𝑦̄, x̄)J(|𝑦̄ − x̄|∕𝜖)d𝑦̄ + b̄(t̄, x̄),

where S̄(𝑦̄, x̄; ū(t̄)) = (ū(t̄, 𝑦̄) − ū(t̄, x̄))∕|𝑦̄ − x̄|, 𝑓 ′(r) = L
C
𝑓 ′(Lr), and b̄(t̄, x̄) = L

C
b(T0 t̄,Lx̄). The time interval T0 for a given

E = f ′(0) is given by T0 = L
√
𝜌∕EM and u(t) = Lū(t∕T0).

In the following studies, we choose the influence function to be J(|x|) = 2|x| exp(−|x|2∕𝛼) with 𝛼 = 0.4. The nonlinear
potential function f is taken to be 𝑓 (|x|S2) = C(1 − exp[−b|x|S2]). We let b = 1 and f ′(0) = Cb = C = 1∕M, where
M = 2 ∫ 1

0 J(r)dr. This gives T0 = 1. The body force is set to zero, ie, b = 0. All numerical results shown in this article will
correspond to aforementioned choice of J, b, and f.

5.2 h-convergence
We study the rate of convergence as seen in the simulations for two different choices of initial conditions. In the first
problem, we consider the Gaussian pulse as the initial condition given by u0(x) = a exp[−(0.5 − x)2∕𝛽], v0(x) = 0.0 with
a = 0.005 and 𝛽 = 0.00001. The time interval is [0, 1.7] and the time step is Δt = 0.00001. We fix 𝜖 to 0.1 and consider the
mesh sizes h = {𝜖∕10, 𝜖∕100, 𝜖∕1000}. For the second problem, we consider the double Gaussian curve as initial condition
u0(x) = a exp[−(0.25 − x)2∕𝛽] + a exp[−(0.75 − x)2∕𝛽], v0(x) = 0.0 with a = 0.005 and 𝛽 = 0.00001. The time interval for
the second problem is [0, 0.5] and the time step is Δt = 0.000005. Here, we consider a smaller horizon 𝜖 = 0.01 and solve
for the three mesh sizes h = {𝜖∕100, 𝜖∕200, 𝜖∕400}.

Using the approximate solutions corresponding to three different mesh sizes, we can easily compute the dependence
of the error with respect to mesh size h. Let u1,u2, and u3 correspond to meshes of size h1, h2, and h3, and let u be the
exact solution. We write the error as ||uh − u|| = Ch𝛼 for some constant C and 𝛼 > 0 and fix the ratio of mesh size
h1∕h2 = h2∕h3 = r to get

log(||u1 − u2||) = C + 𝛼 log h2,

log(||u2 − u3||) = C + 𝛼 log h3.

Then, the rate of convergence 𝛼 is
log(||u1 − u2||) − log(||u2 − u3||)

log(r)
.

In Tables 1 and 2, we list the lower bound on the rate of convergence for different times in the evolution. The rate
of convergence for the simulation is seen to depend on the time. We also note that the rate of convergence for the linear
peridynamic solution is very close to that of the nonlinear peridynamic solution and both convergence rates lie above the
theoretically predicted convergence rate for the L2 error given by 𝛼 = 1.

5.3 Convergence with respect to h and h∕𝝐
We consider the limit of the peridynamic solution as 𝜖 → 0. The initial displacement is u0(x) = a exp[−(0.5 − x)2∕𝛽],
v0(x) = 0.0 with a = 0.005 and 𝛽 = 0.00001. The time domain is taken to be [0, 0.1] and the time step is Δt = 0.0000005.
We fix the ratio 𝜖∕h = 100 and solve the problem for three different peridynamic horizons given by 𝜖 = 0.0016, 𝜖 = 0.0008,

TABLE 1 Convergence result for problem 1. Superscript 1
refers to L2 norm and 2 refers to sup norm. NPD refers to
nonlinear peridynamic and LPD refers to linear peridynamic.
Max time step is 170 000

Time Step LPD1 NPD1 LPD2 NPD2

6 000 1.6416 1.6419 1.4204 1.4204
51 500 1.3098 1.3106 1.3312 1.3331

104 000 1.1504 1.1482 1.5155 1.5557
147 000 1.1364 1.1262 1.6027 1.5215
165 000 1.2611 1.2632 1.5496 1.6055
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TABLE 2 Convergence result for problem 2. Superscript 1 refers
to L2 norm and 2 refers to sup norm. NPD refers to nonlinear
peridynamic and LPD refers to linear peridynamic. Max time step
is 105

Time Step LPD1 NPD1 LPD2 NPD2

2 000 1.4498 1.4504 1.2546 1.2547
54 000 1.3718 1.3707 1.6903 1.6908
96 000 1.3735 1.3719 1.3753 1.3816

TABLE 3 Rate of convergence log(||u𝜖
1−u𝜖2 ||)−log(||u𝜖

2−u𝜖3 ||)
log(𝜖2)−log(𝜖3)

Time Step Conv of LPD Conv of NPD
L2 sup L2 sup

2 000 1.9052 1.5556 1.9052 1.5556
50 000 1.7916 1.6275 1.7916 1.6275

100 000 1.718 1.449 1.718 1.449
150 000 1.6298 1.2688 1.6298 1.2688
200 000 1.5388 1.1086 1.5388 1.1086

Abbreviations: LPD, linear peridynamic; NDP, nonlinear peridynamic.

and 𝜖 = 0.0004. As before, we assume a convergence error ||u𝜖 − u|| ≤ C𝜖𝛼 . The rate is of convergence in the simulations
is measured by

log(||u𝜖1 − u𝜖2 ||) − log(||u𝜖2 − u𝜖3 ||)
log(𝜖2) − log(𝜖3)

.

In Table 3, we record the convergence rate with respect to 𝜖 for different times in the evolution.
Comparison with the elastodynamic solution: Next, we compare the numerical solutions of elastodynamics,

linear peridynamics, and nonlinear peridynamics. The comparison is made using the common initial data: u0(x) =
a exp[−(0.25 − x)2∕𝛽] + a exp[−(0.75 − x)2∕𝛽], v0(x) = 0.0 with a = 0.001 and 𝛽 = 0.003. The time interval for simulation
is [0, 1.0] and the time step is Δt = 0.000001. The time interval has been chosen sufficiently large to include the effect of
wave reflection off the boundary. In Figure 4, we plot the error ||uperi − uelasto|| at each time step. Figure 4 validates the
fact that the error depends on h∕𝜖 (see Equations (21) and (20)). In Figure 5, we plot the solutions at different time steps.

In Figure 4, we see that the error has a jump when t is close to 0.25, 0.5, 0.75, 0.95. The jump near t = 0.25 and t = 0.75 is
due to the wave dispersion effect when the wave hits the boundary. The reason for this is that for peridynamic simulations
with smaller 𝜖 (compare green, cyan, and black curve in Figure 4 with that of large 𝜖 in blue, red, and yellow curve), the
jump in error near t = 0.25 and t = 0.75 goes away irrespective of the h∕𝜖 ratio. As for the jump in error near t = 0.5 and
t = 0.95, we look at the simulation and find that close to time t = 0.5, 0.95, there is an interaction between two Gaussian
pulses traveling toward each other. This interaction is well captured by peridynamic solution when 𝜖 is small along with
a small ratio h∕𝜖. The cyan curve corresponds to smaller 𝜖 as compared with the blue curve. However, the jump near
t = 0.5 and t = 0.95 does not improve much in the cyan curve. However, when we consider the finer mesh used in the
simulation corresponding to the black curve with 𝜖 same as that of the cyan curve, the jump is greatly reduced.

The difference between the red and blue curves in Figure 5 at t = 0.25 and t = 0.75 is due to the presence of wave
dispersion in the nonlocal model and reflection of the pulses by the boundary as described in Figure 4. The difference in
red and blue curves at t = 0.5 and t = 1.0 is due to the interaction between the pulses as they approach each other and
associated approximation error for the nonlocal model described in Figure 4.

Comparison between nonlinear and linear peridynamic solutions: In Proposition 1, we have shown that differ-
ence between the nonlinear and linearized peridynamic force is controlled by 𝜖 when the solution is smooth. Therefore,
we would expect that, as the size of horizon gets smaller, the difference between approximate solution of linear and non-
linear peridynamics will get smaller. Let u1

l ,u2
l be the linear peridynamic solution and u1,u2 be the nonlinear peridynamic

solution. “1” corresponds to (𝜖1 = 0.01, h1 = 𝜖∕50) and “2” (𝜖2 = 0.005,h2 = 𝜖∕100). Figure 6 shows the plot of slope
log(||u1−u1

l ||L2 )−log(||u2−u2
l ||L2 )

log(𝜖1)−log(𝜖2)
at different time steps. We see from the figure that the rate of convergence is very consistent with

respect to time and is very close to expected value 1.
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FIGURE 4 Plot of ||uperi − uelasto||L2 at different time steps. Arguments inside the bracket corresponds to (𝜖, h). “+” corresponds to the
linear peridynamics and “o” corresponds to nonlinear peridynamics. For (𝜖 = 0.005, h = 𝜖∕100) (yellow curve), the error ||uperi − uelasto|| is
smaller compared with the error for (𝜖 = 0.01, h = 𝜖∕50) (blue curve), whereas for the same 𝜖 = 0.005 but with h = 𝜖∕50 (red curve), the error
is in fact higher than the error corresponding to (𝜖 = 0.01, h = 𝜖∕50) (blue curve). To further demonstrate the dependence of ||uperi − uelasto||
on h∕𝜖, the solution corresponding to (𝜖 = 0.001, h = 𝜖∕100) (cyan curve) lies above the yellow curve. However, when the ratio 𝜖∕h is
increased to 500 (black curve), ie, for (𝜖 = 0.001, h = 𝜖∕500), we see that the black curve is lower than the yellow curve. Also note that the
error plot corresponding to linear and nonlinear peridynamics is almost same (“+” and “o” overlap in each curve) [Colour figure can be
viewed at wileyonlinelibrary.com]

FIGURE 5 The elastodynamic solution is shown in red, linear peridynamics in green, and nonlinear peridynamics in blue. Simulation
shows that solutions of linear and nonlinear peridynamics are nearly identical. The green curve is hidden beneath blue curve. The
elastodynamic solution corresponds to mesh size h = 0.00001, whereas the peridynamic solution corresponds to 𝜖 = 0.005 and h = 𝜖∕100.
Plots above are normalized so that the displacement lies within [0, 1] [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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FIGURE 6 Slope of log(||uNPD − uLPD||L2 ) with respect to log(𝜖) at different time steps from k = 0 to k = 106 [Colour figure can be viewed
at wileyonlinelibrary.com]

6 CONVERGENCE OF NONLINEAR NONLOCAL MODELS TO LOCAL
ELASTODYNAMICS IN DIMENSIONS 2 AND 3

We display the convergence of the nonlinear nonlocal model to elastodynamics in dimensions 2 and 3. In general, for
d = 1, 2, 3, the nonlinear nonlocal force is given by

−𝛁PD𝜖(u)(x) = 4
𝜖d+1𝜔d ∫

H𝜖 (x)

J (|𝑦 − x|∕𝜖) 𝑓 ′ (|𝑦 − x|S(𝑦, x;u)2) S(𝑦, x;u)e𝑦−xd𝑦,

where u ∈ L2(D;Rd), H𝜖(x) is the ball of radius 𝜖 centered at x in Rd, 𝜔d is the volume of unit ball in Rd, e𝑦−x = 𝑦−x|𝑦−x| , and
J and f are the same as before.

Proposition 6. (Control on the difference between peridynamic force and elastic force)
Let D be a bounded domain in Rd. If u ∈ C3(D;Rd) and supx∈D|𝛁3u(x)| < ∞, then

sup
x∈D

|||−𝛁PD𝜖(u)(x) − 𝛁 · C̄u(x)||| = O(𝜖),

where C̄ is given by

C̄ = 2𝑓 ′(0)
𝜔d ∫

H1(0)

J(|𝜉|)e𝜉 ⊗ e𝜉 ⊗ e𝜉 ⊗ e𝜉|𝜉|d𝜉, (30)

e𝜉 = 𝜉∕|𝜉| and the strain tensor is u(x) = (𝛁u(x) + 𝛁uT(x))∕2.

In this treatment, we define the boundary 𝜕D of D ⊂ Rd in the usual way as the set of limit points of D. Similar to the
case of one dimension, we consider u = 0 on 𝜕D and extend u by zero by zero outside D. We prescribe a nonlocal boundary
condition on u𝜖 given by u𝜖 = 0 on {x ∈ Rd ∶ dist(x, 𝜕D) ≤ 𝜖}. The initial conditions for u and u𝜖 are the same and given
by u0 and v0 on D with u0 and v0 defined on Rd, d = 2, 3 vanishing outside D′ ⊂ D such that dist(𝜕D′, 𝜕D)> 0. We have
the following.

Theorem 5. (Convergence of nonlinear peridynamics to the linear elastic wave equation in the limit that the horizon
goes to zero)
Let e𝜖 ∶= u𝜖 − u, where u𝜖 is the solution of peridynamics equation

𝜌ü𝜖(t, x) = −𝛁PD𝜖(u𝜖(t))(x) + b(t, x), (31)

and u is the solution of elastodynamics equation

𝜌ü(t, x) = 𝛁 · C̄u(t, x) + b(t, x), (32)

http://wileyonlinelibrary.com
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with elastic tensor given by Equation (30). We assume that u𝜖 and u satisfy the same initial condition and u = 0 on 𝜕D.
Suppose u𝜖(t) ∈ C4(D;Rd), for all 𝜖 > 0 and t ∈ [0,T]. Suppose there exists C1 > 0, C1 independent of the size of horizon
𝜖, such that

sup
𝜖>0

[
sup

(x,t)∈D×J

|||𝛁4u𝜖(t, x)|||
]
< C1 < ∞.

Then, for 𝜖 such that dist(𝜕D′, 𝜕D) > 𝜖 > 0, there exists ∃C2 > 0 such that

sup
t∈[0,T]

⎧⎪⎨⎪⎩∫D
𝜌|ė𝜖(t, x)|2dx + ∫

D

e𝜖(t, x) · C̄e𝜖(t, x)dx
⎫⎪⎬⎪⎭
≤ C2𝜖

2,

so u𝜖 → u in the H1(D;Rd) norm at the rate 𝜖 uniformly in time t ∈ [0,T].

The proof is similar to the case of one dimension except in this case where vector nature of displacement field has to be
considered. Following the steps in Section 7, Proposition 6 and Theorem 5 can be shown, and therefore, we omit the proof.

7 PROOF OF CLAIMS

In this section, we will present the proof of claims in Sections 2 and 3. For simplification, we adopt the following notation:

𝑝 ∶= ux(x), q ∶= uxx(x), r ∶= uxxx(x),

e ∶= (𝑦 − x)|𝑦 − x| = sign{𝑦 − x}.
(33)

In proving results related to consistency error, we will employ the Taylor series expansion of u(y) with respect to point xi.
Since the potential f is assumed to be sufficiently smooth, 𝑓 ′′(r), 𝑓 ′′′(r), and 𝑓 ′′′′(r) are bounded for 0 < r < ∞.

7.1 Bound on difference of peridynamic, linear peridynamic, and elastodynamic force
We prove Proposition 1 for u ∈ C3(D). Using Taylor series expansion, we get

S(𝑦, x;u) = ux(x)
𝑦 − x|𝑦 − x| + 1∕2uxx(x)|𝑦 − x| + 1∕6uxxx(𝜉)|𝑦 − x|(𝑦 − x)

= 𝑝e + q|𝑦 − x|∕2 + T1(𝑦 − x)∕|𝑦 − x|,
where T1 = O(|𝑦 − x|3). On taking the Taylor series expansion of the nonlinear potential and substituting in the
aforementioned expansion, we get(

𝑓 ′(|𝑦 − x|S(𝑦, x;u)2) − 𝑓 ′(0)
)

S(𝑦, x;u) = 𝑓 ′′(0)𝑝3|𝑦 − x|e + (𝑓 ′′(0)𝑝2q3∕2 + 𝑓 ′′′(0)𝑝5e∕2)|𝑦 − x|2 + T2(𝑦 − x),

where T2(𝑦 − x) = O(|𝑦 − x|3). Using the previous equation, we get

− 𝛁PD𝜖(u)(x) + 𝛁PD𝜖

l (u)(x)

= 2
𝜖2

x+𝜖

∫
x−𝜖

J(|𝑦 − x|∕𝜖) (𝑓 ′(|𝑦 − x|S(𝑦, x;u)2) − 𝑓 ′(0)
)

S(𝑦, x;u)d𝑦

= 2
𝜖2

x+𝜖

∫
x−𝜖

[
𝑓 ′′(0)𝑝3|𝑦 − x|e +

(
𝑓 ′′(0)𝑝2q3∕2 + 𝑓 ′′′(0)𝑝5e∕2

) |𝑦 − x|2 + T2(𝑦 − x)
]

J(|𝑦 − x|∕𝜖)d𝑦
= 2

𝜖2

x+𝜖

∫
x−𝜖

𝑓 ′′(0)𝑝2q3∕2|𝑦 − x|2J(|𝑦 − x|∕𝜖)d𝑦 + O(𝜖2)

= O(𝜖),

where terms with e integrate to zero. From this, we see that same estimate holds when u has continuous and bounded
third or fourth derivatives. This proves the assertion of Proposition 1.
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To prove Equation (7), we proceed as follows:

−𝛁PD𝜖

l (u)(x) =
2
𝜖2

x+𝜖

∫
x−𝜖

J(|𝑦 − x|∕𝜖)𝑓 ′(0)S(𝑦, x;u)d𝑦

= 2
𝜖2

x+𝜖

∫
x−𝜖

J(|𝑦 − x|∕𝜖)𝑓 ′(0)
[
𝑝e + q|𝑦 − x|∕2 + T1(𝑦 − x)∕|𝑦 − x|] d𝑦

=
⎛⎜⎜⎝

2
𝜖2

x+𝜖

∫
x−𝜖

J(|𝑦 − x|∕𝜖)𝑓 ′(0)|𝑦 − x|∕2d𝑦
⎞⎟⎟⎠ q + O(𝜖)

= Cuxx(x) + O(𝜖),

where we identify C using Equation (2), and q = uxx(x). This proves Equation (7).
To prove Equation (10), we assume u ∈ C4(D) and Equation (9). Then, by Taylor series expansion, we have

S(𝑦, x;u) = ux(x)
𝑦 − x|𝑦 − x| + 1∕2uxx(x)|𝑦 − x|

+ 1∕6uxxx(x)|𝑦 − x|(𝑦 − x) + 1∕24uxxxx(𝜉)|𝑦 − x|3

= 𝑝e + q|𝑦 − x|∕2 + r|𝑦 − x|2e + T1(𝑦 − x)∕|𝑦 − x|,
where T1(𝑦 − x) = O(|𝑦 − x|4). Substituting this into −𝛁PD𝜖

l (u)(x) and noting that terms with e integrate to zero, we get

−𝛁PD𝜖

l (u)(x) = Cuxx(x) + O(𝜖2).

7.2 Convergence of solution of peridynamic equation to the elastodynamic equation
To prove Theorem 1, we proceed as follows. Let u𝜖 be the solution of peridynamic model in Equation (4), and let u be
the solution of elastodynamic equation in Equation (3). Boundary conditions and initial conditions are same as described
in Section 2. Assuming that the hypothesis of Theorem 1 holds, we have from Proposition 1

−𝛁PD𝜖(u𝜖(t))(x) = Cu𝜖
xx(t, x) + O(𝜖).

We have also assumed that there exists C1 < ∞ such that

sup
𝜖>0

[
sup

(x,t)∈D×J
|u𝜖

xxxx(t, x)|] < C1 < ∞.

Combining this together with (8) we have,

sup
(x,t)∈D×J

|−𝛁PD𝜖 (u𝜖(t)) (x) −Cu𝜖
xx(t, x)| ≤ C3𝜖,

where C3 is independent of x, t and 𝜖. Subtracting equation (4) from equation (3) shows that e𝜖 = u𝜖 − u satisfies

𝜌ë𝜖(t, x) = Ce𝜖xx (t, x) + (−𝛁PD𝜖 (u𝜖(t)) (x) −Cu𝜖
xx(t, x))

= Ce𝜖xx (t, x) + F(t, x),
(34)

where
F(t, x) = −𝛁PD𝜖(u𝜖(t))(x) − Cu𝜖

xx(t, x) and sup
(x,t)∈D×J

|F(t, x)| ≤ C3𝜖,

with boundary condition and initial condition given by

e𝜖(0, x) = 0, ė𝜖(0, x) = 0 ∀x ∈ D,

e𝜖(t, x) = 0, ė𝜖(t, x) = 0 ∀(t, x) ∈ [0,T] × 𝜕D𝜖.

Since e𝜖 satisfies Equation (34) we can apply Gronwall's inequality to find

sup
t∈J ∫

D

𝜌|ė𝜖(t, x)|2dx + ∫
D

C|e𝜖x(t, x)|2dx ≤ C2𝜖
2. (35)
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Now, to show that e𝜖 → 0 in H1(D), we apply Equation (35) together with Poincare's inequality to get

‖e𝜖(t, x)‖2
L2(D) ≤ C ‖e𝜖x(t, x)‖2

L2(D)

≤ C
C

sup
t∈[0,T]

⎧⎪⎨⎪⎩∫D
𝜌|ė𝜖(t, x)|2dx + ∫

D

C|e𝜖x(t, x)|2dx
⎫⎪⎬⎪⎭

≤ C
C

C2𝜖
2,

where C is the Poincare constant. On collecting results this shows that e𝜖 → 0 in the H1(D) norm with the rate 𝜖. This
completes the proof of Theorem 1. Identical arguments using Equation (10) deliver Theorem 2.

7.3 Bounds on the consistency error
We first prove for linear continuous interpolation and then extend the proof to higher-order interpolations.

7.3.1 Linear interpolation
In this section, Proposition 2 is established. We begin by writing the difference S(𝑦, xi;h[u]) − S(𝑦, xi;u). It is given by

S(𝑦, xi;h[u]) − S(𝑦, xi;u) = h[u](𝑦) − u(𝑦)|𝑦 − xi| . (36)

From the hypothesis of Proposition 2, there is a constant C for which |uxx| < C on D. Using the approximation property|h[u] − u| ≤ Ch2 and applying |y − xi| > h for y outside the interval [xi−1, xi+1] gives

|S(𝑦, xi;h[u]) − S(𝑦, xi;u)| ≤ ⎧⎪⎨⎪⎩
C|𝑦 − xi|, if 𝑦 ∈ [xi−1, xi+1],
Ch, if 𝑦 ∈ [xi − 𝜖, xi−1],
Ch, if 𝑦 ∈ [xi+1, xi + 𝜖].

Note further that |y − xi| ≤ h for y ∈ [xi−1, xi+1] and we conclude

|S(𝑦, xi;h[u]) − S(𝑦, xi;u)| ≤ Ch. (37)

Straightforward calculation shows

|||∇PD𝜖

𝓁 (h[u]) − ∇PD𝜖

𝓁(u)
||| ≤ 2𝑓 ′(0)

𝜖2

xi+𝜖

∫
xi−𝜖

|S(𝑦, xi,h[u]) − S(𝑦, xi;u)|J(|𝑦 − xi|∕𝜖)d𝑦

≤ 4𝑓 ′(0)MCh
𝜖

,

where M = max0≤z<1J(z) and Equation (18) of Proposition 2 follows.
We now establish the consistency error for the nonlinear nonlocal model. We begin with an estimate for the strain.

Applying the notation described in (33) with p and e defined for x = xi, we apply Taylor's theorem with remainder to get

S(𝑦, xi;u) = ux(xi)(𝑦 − xi)∕|𝑦 − xi| + uxx(𝜉)|𝑦 − xi|∕2
= 𝑝e + T1(𝑦 − xi)∕|𝑦 − xi|, (38)

where T1(𝑦 − xi) = O(|𝑦 − xi|2).
From Equation (37), we can write

S(𝑦, xi;u) = S(𝑦, xi;h[u]) + O(h),

or

S(𝑦, xi;h[u]) = S(𝑦, xi;u) + O(h), (39)
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or we can write S(𝑦, xi;u) = S(𝑦, xi;h[u]) + 𝜂, where |𝜂| < Ch. Adopting this convention, first we write

|𝑦 − xi|S2(𝑦, xi;u) = |𝑦 − xi|(S(𝑦, xi;h[u]) + 𝜂)2

= |𝑦 − xi|S2(𝑦, xi;h[u]) +
∑
𝑗∈I

2𝜂𝜙𝑗(𝑦)(u(x𝑗) − u(xi)) + |𝑦 − xi|𝜂2,

where the set I = {j ∶ xj ∈ [xi − 𝜖, xi + 𝜖]} and we have used the identity

1 =
∑
𝑗∈I

𝜙𝑗(𝑦), 𝑦 ∈ [xi − 𝜖, xi + 𝜖].

Next, we estimate ∑
𝑗∈I

𝜙𝑗(𝑦)(u(x𝑗) − u(xi)) ≤ sup{|u(𝑦) − u(xi)| for 𝑦 ∈ [xi − 𝜖, xi + 𝜖]}

≤ 2𝜖 sup
𝑦∈D

|ux(𝑦)|.
Since ux is bounded, we see that

∑
𝑗∈I𝜙𝑗(𝑦)(u(x𝑗) − u(xi)) = 𝜁 , where |𝜁 | ≤ 𝜖Const, and

|𝑦 − xi|S2(𝑦, xi;u) = |𝑦 − xi|(S(𝑦, xi;h[u])2 + 2𝜁𝜂 + 𝜂2

Applying Taylor's theorem with remainder to the function 𝑓 ′(|𝑦 − x|(S(𝑦, xi;h[u]) + 𝜂)2) now gives

𝑓 ′ (|𝑦 − x|S(𝑦, xi;u)2) = 𝑓 ′ (|𝑦 − x|(S(𝑦, xi;h[u]))2) + O(h), (40)

where we have used that 𝑓 ′′(r) is bounded on 0 ≤ r ≤ ∞.
Then, application of Equations (38), (39), and (40) and substitution delivers the desired estimate

− 𝛁PD𝜖(h[u])(xi) + 𝛁PD𝜖(u)(xi)

= 2
𝜖2

xi+𝜖

∫
xi−𝜖

𝑓 ′(|𝑦 − x|(S (𝑦, xi;h[u]))2) (S(𝑦, xi;u) + O(h)) J(|𝑦 − xi|∕𝜖)d𝑦

− 2
𝜖2

xi+𝜖

∫
xi−𝜖

(
𝑓 ′(|𝑦 − x|(S (𝑦, xi;h[u]))2) + O(h)

)
S(𝑦, xi;u)J(|𝑦 − xi|∕𝜖)d𝑦

= O(h∕𝜖),

and Equation (19) of Proposition 2 is proved.

7.3.2 Higher-order interpolations and convergence
In this section, we outline the proof of higher-order accuracy using higher-order interpolation functions when the solution
has sufficiently high-order bounded derivatives. The order of the interpolation is p, the mesh size h, and the grid points
are xi = ih∕p for i ∈ K ∪ K𝜖 . We state the following key result.

Lemma 2. If u ∈ C p+1(D) with (p + 1)th derivative bounded, then, for pth-order interpolation, we have the following
estimate: |S(𝑦, xi;h[u]) − S(𝑦, xi;u)| ≤ C̃h𝑝 ∀i ∈ K,∀𝑦 ∈ [xi − 𝜖, xi + 𝜖], (41)

where constant C̃ is independent of h, i, and y.

Proof. Fix some i ∈ K. There exist C > 0 such that sup |𝜕𝑝+1
x u| < C. The interpolation error37 is |h[u](𝑦) − u(𝑦)| ≤

Ch𝑝+1 for all 𝑦 ∈ D ∪ 𝜕D𝜖 . Now, for 𝑦 ∈ [xi − 𝜖, xi−1] ∪ [xi+1, xi + 𝜖], h ≤ |y − xi| and hence 1|𝑦−xi| ≤ 1
h

. Thus, from
Equation (36), we have |S(𝑦, xi;h[u]) − S(𝑦, xi;u)| ≤ Ch𝑝. (42)

The proofs of Propositions 4 and 5 now follow using Lemma 2 and applying the same steps used in the proofs of
Propositions 2 and 3 for linear interpolation.
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8 CONCLUSION

Earlier related work25 analyzed the model considered here but for less regular nondifferentiable Hölder continuous solu-
tions. For that case, solutions can approach discontinuous deformations (fracture-like solutions) as 𝜖 → 0 and it is shown
that the numerical approximation of the nonlinear model in dimension d = 1, 2, 3 converges to the exact solution at the
rate O(Δt + h𝛾∕𝜖2), where 𝛾 ∈ (0, 1] is the Hölder exponent, h is the size of mesh, 𝜖 is the size of horizon, and Δt is the
size of time step. In this work, we have shown that we can improve the rate of convergence if we somehow have a priori
knowledge on the number of bounded continuous derivatives of the solution. If the solution has p + 1 derivatives, one
can use pth-order polynomial local interpolation and obtain an order hp∕𝜖 consistency error.

In this work, we have analyzed the smooth prototypical micro-elastic bond model introduced in the work of Silling.1

From the perspective of computation, the resolution of the mesh inside the horizon of nonlocal interaction is the main
contributor to the computational complexity. This work provides explicit error estimates for the differences between the
solutions of elastodynamics and nonlocal models. It shows that the effects of the mesh size relative to the horizon can
be significant. Numerical errors can grow with decreasing horizon if the mesh is not chosen suitably small with respect
to the peridynamic horizon. A fixed ratio of mesh size to horizon will not increase accuracy as the horizon tends to zero.
We have carried out numerical simulations where the accuracy decreases when 𝜖 is reduced and the ratio h∕𝜖 is fixed.
This is shown to be in line with the consistency error bounds that vanish at the rate O(h∕𝜖). These results show that
the grid refinement relative to the horizon length scale has more importance than decreasing the horizon length when
establishing convergence to the classical elastodynamics description.

The results of this analysis rigorously show that one can use a discrete linear local elastodynamic model to approximate
the nonlinear nonlocal evolution when sufficient regularity of the evolution is known a priori. In doing so, one incurs
a modeling error of order 𝜖 but saves computational work in that there is no nonlocality so the mesh diameter h no
longer has to be small relative to 𝜖. The discretization error is now associated with the approximation error for the initial
boundary value problem for the linear elastic wave equation.

We reiterate that the nonlinear kernel analyzed here corresponds to a smooth version of the prototypical micro-elastic
bond model treated in the work of Silling.1 On the other hand, its linearization corresponds to the one of the types kernel
functions treated in the work of Chen et al.38 In this paper, the goal is to understand the convergence of numerical schemes
for the nonlinear model together with its linearization with respect to horizon and discretization. The work of Chen et al38

asks distinctly different questions and is concerned with identifying linear nonlocal models that converge to linear elas-
todynamics when the mesh density is held fixed and the horizon of nonlocality goes to zero. This is not the case for the
kernel treated here.

Our results and analysis support a combined local-nonlocal approach to the numerical solution of these problems. This
type of numerical approach is the focus of many recent investigations, see other works,39-46 where the use of nonlocal
models and local models is applied to different subdomains of the computational domain. These approaches are promising
in that they reduce the computational cost of the numerical simulation. A full understanding of the error associated in
implementing these adaptive methods is an exciting prospect for future research.
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