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Abstract A simple nonlocal field theory of peridy-
namic type is applied to model brittle fracture. The
kinetic relation for the crack tip velocity given by Lin-
ear Elastic Fracture Mechanics (LEFM) is recovered
directly from the nonlocal dynamics, this is seen both
theoretically and in simulations. An explicit formula
for the change of internal energy inside a neighbor-
hood enclosing the crack tip is found for the nonlocal
model and applied to LEFM.

Keywords Fracture · Peridynamics · LEFM · Fracture
toughness · Stress intensity · Local power balance

1 Introduction

The fracture of solids can be viewed as a collective
interaction across length scales. Application of suffi-
cient stress or strain to a brittle material breaks atom-
istic bonds leading to fracture at macroscopic scales.
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The appeal of a nonlocal fracture theory like peridy-
namics Silling (2000), Silling et al. (2007) is that frac-
ture is captured as an emergent phenomenon. At the
same time such a theory needs to recover the estab-
lished theory of dynamic fracture mechanics described
in Freund (1990), Ravi-Chandar (2004), Anderson
(2005), Slepian (2002) as a limiting case. Motivated
by these observations we consider a nonlocal peridy-
namic model (cohesive dynamics) proposed in Lipton
(2014, 2016). The length scale of nonlocal interaction
between any material point and its neighbors is called
the horizon. Here the force strain relation between two
points is linear elastic for small strains, softens under
sufficiently large strain and ultimately becomes zero,
see Fig. 2. In this nonlocal model displacement gradi-
ents can become steep and localize onto thin regions,
see Jha and Lipton (2020). This model is used to show
the kinetic relation for the velocity of the crack tip given
by LEFM Freund (1990) follows in the limit of vanish-
ing horizon.

In this paper the kinetic relation of LEFM is recov-
ered from the nonlocal model in two different ways.
The first approach to recovering the kinetic relation
is to note that the same equation of motion applies
everywhere in the body for the nonlocal model. We
use this to show that local power balance is given by
the stationarity in time of the internal energy of a small
domain containing the crack tip. The change in internal
energy is shown to be the difference between the elas-
tic energy flowing into the crack and the kinetic energy
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and stress work flux flowing into the domain, which is
given by formula (18). To leading order the stress work
flux is precisely the rate of energy needed to create
new surface (21). These results are obtained directly
and exclusively from the dynamics governed by the
nonlocal Cauchy equations of motion for a continuum
body. This is the explicit connection between the non-
local Cauchy equations of motion derived from double
well potentials and the energy rate required to make
new surface. For remote boundary loading we apply
energy balance and pass to the local limit to recover
the celebrated kinetic relation for the modern the-
ory of dynamic fracture mechanics articulated in Fre-
und (1990), Ravi-Chandar (2004), Anderson (2005),
Slepian (2002), see 4.1. Next it is shown that local
power balance must hold for the nonlocal model when
the displacement field is translation invariant inside a
neighborhood of the crack (see Sect. 4.2). We pass to
the limit of vanishing horizon to recover that the same
holds true for LEFM.As a second approachwe develop
a nonlocal dynamic J integral and applyMott’s hypoth-
esis on energy balance to a small region surrounding
the crack tip. This is done in Sect. 4.3. The kinetic
relation of LFEM is then obtained from the nonlocal
model by passing the limit of vanishing nonlocality.
Here it is pointed out that the approach of Sect. 4.1 is
self contained and follows exclusively from the nonlo-
cal Cauchy equation of motion. On the other hand the
approach of Sect. 4.3 follows the classic one Freund
(1990) and uses the nonlocal model to only compute
the flow of elastic energy into the crack tip.

Next we provide a computational example to illus-
trate that power balance holds in the neighborhood of
the crack tip using the nonlocal model. The fracture
toughness Gc, density, and elastic modulus of the mate-
rial are prescribed. The numerical simulation using the
nonlocal model is carried out for a single edge notch
specimen of finite width and length. The simulation
delivers a mode I crack traveling with constant veloc-
ity at roughly half of the Rayleigh wave speed. This
simulation is consistent with the experimental results
reported in Goldman et al. (2010). The change in inter-
nal energy inside a small neighborhood is calculated
using (18) and is zero, i.e., power balance holds for
a dynamic crack traveling at constant velocity V . The
elastic energy flowing into a small neighborhood of the
crack tip isF and the power balance inside a neighbor-

hood of diameter δ is of the form

Gc ≈ F
V

. (1)

Here ≈ indicates agreement to leading order in δ.
This demonstrates that the energy released per unit
length during crack growth at constant velocity is equal
to the elastic energy flowing into the crack tip (see
Sect. 5). It is important to note that the power balance
(1) emerges through simulation and calculation using
(18) as opposed to being independently postulated on
physical grounds. In other words local power balance
is a consequence of the nonlocal dynamics. The simu-
lation and calculation are described in Sect. 5.

The paper is organized as follows: The nonlocal
model of peridynamic type is presented in Sect. 2.
Sect. 3 describes the fracture toughness and elastic
properties associated with the nonlocal model. The
main results given by the local energy balance and the
recovery of the kinetic relation for LEFM are presented
in 4. For clarity we postpone the derivations - calcula-
tions for later (see Sects. 6 and 7 ) and present simula-
tions that emphasize the local energy balance in Sect. 5.
Section 6 calculates the energy flow into the crack tip
for the nonlocal model. Section 7 explicitly shows how
the stress work flowing into the crack tip corresponds
to the power required to create new fracture surface.
The results are summarized in Sect. 8.

2 Nonlocal modeling

The appeal of nonlocal peridynamicmodels is that frac-
ture appears as an emergent phenomena generated by
the underlying field theory eliminating the need for
supplemental kinetic relations describing crack growth.
The deformation field inside the body for points x at
time t is written u(x, t). The peridynamic model is
described simply by the balance of linear momentum
of the form

ρut t (x, t) =
∫
Hε (x)

f ( y, x) d y + b(x, t) (2)

where Hε(x) is a neighborhood of x, ρ is the density,
b is the body force density field, and f is a material-
dependent constitutive law that represents the force
density that a point y inside the neighborhood exerts
on x as a result of the deformation field. The radius ε

of the neighborhood is referred to as the horizon. Here
all points satisfy the same basic field equations (2).
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Fig. 1 Single-edge-notch

D

This approach to fracture modeling was introduced in
Silling (2000) and Silling et al. (2007).

We work with a class of peridynamic models with
nonlocal forces derived from double well potentials.
SeeLipton (2014), Lipton (2016). The termdoublewell
describes the force potential between two points. One
of the wells is degenerate and appears at infinity while
the other is at zero strain. For small strains the nonlocal
force is linearly elastic but for larger strains the force
begins to soften and then approaches zero after reaching
a critical strain. The associated nonlocal dynamics is
called cohesive dynamics. We consider a single edge
notch specimen as given in Fig. 1 in plane stress.

In this treatment the displacement field u : D ×
[0, T ] → R

2 is small compared to the size of the spec-
imen D and the deformed configuration is the same as
the reference configuration. We have u = u(x, t) as
a function of space and time but will suppress the x
dependence when convenient and write u(t). The ten-
sile strain S between two points x, y in D along the
direction ey−x is defined as

S( y, x, u(t)) = u( y, t) − u(x, t)

| y − x| · ey−x, (3)

where ey−x = y−x
| y−x| is a unit vector and “·” is the dot

product.
In the double well model the force acting between

material points x and y is initially elastic and then soft-
ens and decays to zero as the strain between points
increases, see Fig. 2. The critical strain Sc > 0 for
which the force begins to soften is given by

Sc = rc√| y − x| , (4)

and S+ is the strain at which the force goes to zero

S+ = r+
√| y − x| . (5)

rc−rc
r+−r+

r

g′(r)

Fig. 2 Cohesive force. The force goes smoothly to zero at ±r+

The nonlocal force is defined in terms of a double
well potential. The potential is a function of the strain
and is defined for all x, y in D by

Wε(S( y, x, u(t))) = J ε(| y − x|) 1

ε3ω2| y − x|
g(

√| y − x|S( y, x, u(t))) (6)

where Wε(S( y, x, u(t))) is the pairwise force poten-
tial per unit length between two points x and y. It is
described in terms of its potential function g, given by

g(r) = h(r2) (7)

where h is concave. Here ω2 is the area of the unit disk
and ε2ω2 is the area of the horizonHε(x). The influence
function J ε(| y− x|) is a measure of the influence that
the point y has on x. Only points inside the horizon
can influence x so J ε(| y − x|) nonzero for | y − x| <

ε and zero otherwise. We take J ε to be of the form:
J ε(| y − x|) = J (

| y−x|
ε

) with J (r) = 0 for r ≥ 1 and
0 ≤ J (r) ≤ M < ∞ for r < 1.

The displacement field u(x, t) evolves according to
a nonlocal version of Cauchy’s equations of motion for
a continuum body

ρ üε(x, t) = Lε(uε)(x, t) + b(x, t), for x ∈ D. (8)

Here Lε(uε) is

Lε(uε) =
∫
Hε (x)

f ε( y, x) d y (9)

and f ε(x, y) is given by

f ε(x, y)

= 2∂SWε(S( y, x, uε(t)))ey−x, (10)
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x2 = 0

Centerline

D

Fig. 3 Failure zone centerline

where

∂SWε(S( y, x, uε(t)))

= 1

ε3ω2

J ε(| y − x|)
| y − x| ∂Sg(

√| y − x|S( y, x, uε(t))).

(11)

The dynamics is complemented with the initial data

uε(x, 0) = u0(x), ∂tuε(x, 0) = v0(x), (12)

and the appropriate traction and Dirichlet boundary
conditions described in Sect. 5.

2.1 Failure Zone - Process Zone

The failure zone represents the crack in the nonlocal
model. It is characterized by the failure zone center-
line. The failure zone centerline starts at the notch and
propagates into the interior of the specimen. The force
between two points x and y separated by the failure
zone centerline is zero. The centerline is shown in Fig. 3
and the failure zone is the grey region in Fig. 4. For the
boundary conditions chosen here failure is in tension
and confined to a neighborhood of the x2 = 0 axis of
width 2ε. Just in front of the failure zone is the pro-
cess zone where the force between two points x and
y on either side of the x2 = 0 axis is decreasing with
increasing strain. At the leading edge of the crack one
sees force softening between points x and y and as
the crack centerline moves forward passing between x
and y the force between x and y decreases to zero, see
Fig. 4. It needs to be stressed the failure zone and pro-
cess zone emerge from the nonlocal dynamics and are
not prescribed. For example see Sect. 5, Fig. 10.

3 Fracture toughness and elastic properties for the
cohesive model: as specified through the force
potential

For finite horizon ε > 0 the fracture toughness and
elastic moduli are recovered directly from the cohesive
strain potential Wε(S( y, x, u(t))). Here the fracture
toughness Gc is defined to be the energy per unit length
required eliminate force between each point x and y
on either side of a line in R

2. In this case the line is
the x2 = 0 axis. Because of the finite length scale
of interaction only the force between pairs of points
within an ε distance from the line are considered. The
fracture toughness Gc is calculated in Lipton (2016).
Proceeding as in Silling and Askari (2005) we have

Gc = 2
∫ ε

0

∫ ε

z

∫ arccos(z/ζ )

0
Wε(S+)ζ 2 dψ dζ dz (13)

where ζ = | y − x|, see Fig. 5. Substitution of
Wε(S( y, x, u(t))) given by (6) into (13) delivers

Gc = 4

π

∫ 1

0
h(S2+)r2 J (r)dr. (14)

It is evident from this calculation that the fracture
toughness is the same for all choice of horizons. This
provides the rational behind the ε scaling of the poten-
tial (6) for the cohesive model. Moreover the layer
width on either side of the crack centerline over which
the force is applied to create new surface tends to zero
with ε. In this way ε can be interpreted as a parameter
associated with the size of the failure zone of the mate-
rial. Equation (14) gives a way to calibrate the function
h that specifies the potential (7) when Gc is given.

Further calibration of h is possible using the elastic
moduli of the material. To calibrate h we relate elastic
moduli of the material to the cohesive potential
Wε(S( y, x, u(t))). When the horizon is sufficiently
small we suppose the displacement inside Hε(x) is
affine, that is, u(x) = Fx where F is a constant matrix.
For small strains, i.e., S = Fe ·e 	 Sc, a Taylor series
expansion at zero strain shows that the strain potential
is linear elastic to leading order and characterized by
elastic moduli μ and λ associated with a linear elastic
isotropic material

W (x) =
∫
Hε (x)

| y − x|Wε(S( y, x, u)) d y

= μ|F |2 + λ

2
|Tr{F}|2 + O(ε|F |4). (15)
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Fig. 4 The failure zone is
the grey shaded region and
the process zone is the clear
region inside the contour

Failure Zone Process zone
ε
ε

�ε(t)

ε

y

z

x

ζ

ε

θ

cos−1(z/ζ)
Failure

Zone Centerline

Fig. 5 Evaluation of fracture toughness Gc. For each point x
along the dashed line, 0 ≤ z ≤ ε, the work required to break the
interaction between x and y in the spherical cap is summed up in
(13) using spherical coordinates centered at x. This summation
is done on both sides of the failure zone centerline

The elastic moduli λ andμ are calculated directly from
the strain energy density and are given by

μ = λ = M
1

4
h′(0) , (16)

where the constant M = ∫ 1
0 r2 J (r)dr . The elasticity

tensor is given by

Ci jkl = 2μ

(
δikδ jl + δilδ jk

2

)
+ λδi jδkl . (17)

When μ is specified h′(0) is determined by (16). For
the simple potentials considered here the elasticity cor-
responds to materials with Poisson’s ratio 1/4, i.e.,
λ = μ. It is noted that we are free to consider other
multi well potentials and general choices of Poisson’s
ratios Jha and Lipton (2019b); these correspond to state
based peridynamic models Silling et al. (2007).

4 Kinetic relation from nonlocal dynamics

In this section we show that the well known kinetic
relation for the velocity of the crack tip, Freund (1990),
follows from the nonlocal model in the limit of vanish-
ing horizon in two different ways.We begin by defining
the kinetic energy density by T ε = ρ|u̇ε(x, t)|2/2 and
the stress work density for the nonlocal model given by
W ε(x) = ∫

Hε (x)
| y − x|Wε(S( y, x, uε(t))) d y.

4.1 Rate of internal energy change inside a domain
containing the crack tip

Note that for the nonlocal model the same equation
applies everywhere in the body. Because of this we
can calculate the time rate of change of internal energy
of a domain containing the crack tip and pass to the
limit of local interactions. Fix a contour Γδ of diameter
δ surrounding the domain Pδ(t) containing the tip of
the failure zone for the local model, see Fig. 6. Recall
that the line centered within the failure zone running
from the notch to the leading edge of the failure zone
is called the failure zone center line, see Fig. 3. We
investigate power balance in regions containing the tip
of the failure zone. We suppose Pδ(t) is moving with
the crack tip velocity V ε(t) along the horizontal axis.
A direct calculation given in Sect. 6 establishes the
following explicit formula for the rate of change in
internal energy inside the domain containing the edge
of the failure zone.

Rate of change of internal energy for a region con-
taining the crack tip for the nonlocal model:

d

dt

∫
Pδ(t)

T ε + W ε dx = I ε(Γδ(t)) (18)
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nAδ
P δ

Γδ

V εε
ε

Fig. 6 Contour Γδ surrounding the domain Pδ moving with the
velocity V ε of the failure zone in grey and process zone

with

I ε(Γδ(t)) =
∫
Γδ(t)

(T ε + W ε)V εe1 · n ds − Eε(Γδ(t)),

(19)

where n is the outward directed unit normal, ds is an
element of arc length, and e1 is the unit vector pointing
in the direction of crack propagation. The rate of elastic
energy flowing into the domain surrounding the crack
tip is

Eε(Γδ(t))

=
∫
Aδ(t)

∫
Hε (x)∩Pδ(t)

∂SWε(S( y, x, uε))ey−x

· (u̇ε(x) + u̇ε( y)) d ydx,

(20)

where Aδ(t) is the part of D exterior to Pδ(t). These
relations follow directly from the nonlocal Cauchy’s
equations of motion (8), this is shown in Sect. 6. Equa-
tion (18) gives the following energy criterion for local
power balance:

Local power balance of a neighborhood containing
the crack tip is given by the stationarity of its internal
energy with respect to time.

The stress work density flowing into the moving
domain is related to fracture toughness by∫

Γδ(t)
W εV εe1 · n ds = −GcV ε(t) + O(δ). (21)

and∫
Γδ(t)

T εV εe1 · n ds = O(δ). (22)

These identities are obtained in Sect. 7. One recalls that
the stress power is that part of the externally supplied
power which is not converted into kinetic energy. This
is corroborated by the numerical experiments provided
in Sect. 5.

When the horizon goes to zero we get for V εe1 →
V e1,

lim
ε→0

∫
Γδ(t)

W εV εe1 · n ds = −GcV (t),

lim
ε→0

Eε(Γδ(t)) = −
∫

Γδ

CEu0n · u̇0 ds + O(δ),

(23)

whereCEu0n·u̇0 is the energy flux into Pδ . The change
in internal energy inside the domain containing the
crack tip is given by:

lim
ε→0

d

dt

∫
Pδ(t)

T ε + W ε dx

=
∫

Γδ

CEu0n · u̇0 ds − GcV (t) + O(δ).

(24)

Off the crack the displacement u0 satisfies Cauchy’s
equations of motion for a continuum body

ρ ü0 = div
(
CEu0

)
+ b (25)

where Ei j = 1/2(u0i, j +u0j,i ) is the symmetrized gradi-
ent Lipton (2014, 2016). The crack flanks are traction
free and u0 satisfies boundary and initial conditions see
Lipton and Jha (2020).

For F = limδ→0
∫
Γδ

CEu0n · u̇0 ds we get
lim
δ→0

lim
ε→0

d

dt

∫
Pδ(t)

T ε + W ε dx + GcV = F . (26)

Power balance gives

lim
δ→0

lim
ε→0

d

dt

∫
Pδ(t)

T ε + W ε dx = 0, (27)

and from Atkinson and Eshelby (1965), Kostrov and
Nikitin (1970), Freund (1972), and Willis (1975) the
semi explicit kinetic relation connecting the energy flux
into the crack tip to the crack velocity follows from (26)
and is of the form given by Freund and Clifton (1974)

Gc = F
V

= 1 + ν

E

V 2

c2s D
αt K

2
I (t), (28)

were ν is the Poisson’s ratio, E is the Young modulus
V is the crack velocity, cs is the shear wave speed,
cl = (λ + 2μ/ρ)1/2 is the longitudinal wave speed,
D = 4αsαl − (1 + α2

s )
2, and αs = (1 − V 2/c2s )

1/2,
αl = (1−V 2/c2l )

1/2.Here KI (t) is themode I dynamic
stress intensity factor and depends on the details of the
loading and is not explicit.

In summary (24) and (26) are recovered directly
from (8) and are a consequence of the nonlocal dynam-
ics in the ε = 0 limit. The recovery is possible since
the nonlocalmodel iswell defined over the failure zone.
The rate of change in energy (18) and its limit (24) are
calculated in Sects. 6 and 7.
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�ε
+

�ε−

−n

SδAδ

ε
ε

V ε

Fig. 7 The contour Sδ surrounding the tip of the failure zone (in
gray) and process zone moving with velocity V ε

4.2 Local power balance for translation invariant
displacement in the neighborhood of the crack tip.

In this section we consider a constant velocity crack for
our peridynamic model and suppose that the displace-
ment is translation invariant in the neighborhood of the
crack tip. These assumptions are standard in LEFM
Rice (1968b), Sih (1968), Irwin (1967), Freund and
Clifton (1974), Nillison (1974). For this case we show
that the change in the internal energy of the neighbor-
hood surrounding the crack tip is zero. So energy bal-
ance holds for the peridynamic model. To see this con-
sider the translation invariant displacement field of the
form uε(x, t) = uε(x− tV e1)where t is time and V is
the constant crack speed directed along the positive x1
axis. It follows that the stress power and rate of change
in kinetic energy inside Pδ are given by

Ẇ ε = −∂x1W
ε V

Ṫ ε = −∂x1T
ε V .

(29)

So from the divergence theorem we get∫
Pδ(t)

Ṫ ε + Ẇ ε dx

= −
∫

Γδ(t)
(T ε + W ε)V εe1 · n ds,

(30)

and by Reynolds transport theorem (54) we discover
the nonlocal model gives local power balance, i.e.,

d

dt

∫
Pδ(t)

T ε + W ε dx = 0. (31)

From this together with (18), (30) we conclude that∫
Γδ(t)

(T ε + W ε)V εe1 · n ds − Eε(Γδ(t)) = 0, (32)

and from (21) our peridynamic model gives

GcV = −Eε(Γδ(t)) + O(δ). (33)

On passing to the zero horizon limit in the nonlocal
dynamics we see that local power balance for constant
velocity cracks modeled by LEFM is given by

Local power balance for LEFM:

GcV = lim
δ→0

∫
Γδ

CEu0n · u̇0 ds. (34)

The local power balance for LEFM has been predicted
here using the nonlocal model.

4.3 The peridynamic J integral and Linear Elastic
Fracture Mechanics

For LEFM the elastic field near the crack tip is derived
from the local Cauchy’s equations of motion for a con-
tinuum body. This gives the flow of elastic energy into
the crack tip, Freund (1990). On the other hand the
kinetic relation for LEFM does not follow from the
local Cauchy’s equation of motion alone. Instead the
kinetic relation for LEFM follows fromMott’s hypoth-
esis Mott (1948) on the balance of elastic energy flow-
ing into the crack tip and power needed to create new
fracture surface Freund (1990). In this section we will
proceed like is done in the local theory but obtain the J
integral for the nonlocal model and compare with the
previous results. We compute the time rate of change
of the internal energy of the domain Aδ(t) surrounding
the crack tip inside the contour shown in Fig. 7. Cal-
culation as in Sect. 7 shows that the energy flux from
Aδ into the flanks of the failure zone �ε± is zero so the
energy flux through the surface Sδ of diameter δ is the
energy flow into the tip of the damage zone given by
J ε(Sδ(t)) where

J ε(Sδ(t)) = −
∫
Sδ(t)

(T ε + W ε)V εe1 · n ds
+ Eε(Sδ(t)),

(35)

here n is the outward directed unit normal. The rate of
elastic energy flowing into in the domain surrounding
the crack tip is

Eε(Sδ(t))

=
∫
Aδ(t)

∫
Hε (x)∩Qδ(t)

∂SWε(S( y, x, uε))ey−x

· (u̇ε(x) + u̇ε( y)) d ydx.

(36)
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When the horizon goes to zero a calculation as in Sect. 7
shows,

lim
ε→0

∫
Sδ(t)

(T ε + W ε)V εe1 · n ds = O(δ),

lim
ε→0

Eε(Sδ(t)) = −
∫
Sδ

CEu0n · u̇0 ds,
(37)

and the local limit of the peridynamic J integral is given
by

J (Sδ(t)) = −
∫
Sδ

CEu0n · u̇0 ds + O(δ) (38)

andon taking δ = 0we recover the total energyflux into
the crack tip as in LEFM. Note that (38) differs from
(24) since Sδ does not cross the failure zone. Formula
(38) is the well known J integral of LEFM introduced
in Rice (1968a), and developed for dynamics Atkinson
and Eshelby (1965), Freund (1972), and Sih (1970).
Applying energy balance and using the general form
of the elastic fields near the crack tip for samples of
infinite extent Atkinson and Eshelby (1965), Kostrov
and Nikitin (1970), Freund (1972), and Willis (1975)
we recover the crack tip kinetic relation (28).

Alternate versions of the peridynamic J integral have
been deduced for dynamic fracture problems in Silling
and Lehoucq (2010) using balance laws. For quasi-
static fracture problems the work of Hu et al. (2012),
derive a J integral using an infinitesimal virtual crack
extension and Stenström and Eriksson (2019) acceler-
ate the numerical calculation of the J integral using the
peridynamic displacement field. The dynamic J inte-
gral developed here is derived from the equation of
motion using integration by parts and naturally agrees
with Silling and Lehoucq (2010). However the explicit
form is different and follows from a suitable change
of variables. In addition the“crack” for the nonlocal
model is not artificially assumed infinitesimally thin as
in other approaches but instead we use the fact that it
has a thickness that is twice the peridynamic horizon.

To summarize the approach of Sect. 4.1 is self
contained and follows exclusively from the nonlocal
Cauchy equation of motion. While the approach of
Sect. 4.3 reflects the classic approach and uses the non-
localmodel to compute the elastic energy only. It is then
equated to the energy required to create new fracture
surface invoking Mott’s hypothesis as is done with the
local theory.

5 Numerical simulation and analysis

The principal point of peridynamic modeling is that
crack motion is part of the solution and emerge from
the nonlocal dynamics. This is the hallmark of peridy-
namic modeling Silling (2000), Ha and Bobaru (2010).
In this section,we provide a numerical simulation using
the cohesive dynamics given by (8) to see that a crack
moving at constant speed satisfies energy balance. The
numerical computation also shows that the stress work
flux is nearly equal to the energy release rate as antici-
pated by the theory, see (21), (22), (23).

5.1 Setup

We consider a sample of material with Young’s modu-
lus E = 88 kPa, Poisson’s ratio ν = 0.25, and material
density ρ = 1011.2 kg/m3. The Rayleigh wave speed
and shear wave speed for the sample are cR = 5.502
m/s and cs = 5.9 m/s respectively. The numerical sim-
ulation is motivated by the experiments carried out in
Goldman et al. (2010) and the material domain, hori-
zon, discretization, and boundary conditions are shown
in Fig. 8. In this work we assume plane stress condi-
tions. We consider a pre-cracked specimen as shown
in Fig. 8. The pre-crack is of length l = 3 mm. The
critical energy release rate is taken to be Gc = 20 J/m2.

The force potential is g(r) = c(1 − exp[−βr2]),
where c, β are constants. The influence function is of
the form J (r) = 1 − r . Equations (14), (16) are used
to calibrate the values of the parameters c, β. For the
material properties listed above we get c = 15.705,
β = 8965.378. We define the damage Z(x) at a mate-
rial point x as follows:

Z(x) = sup
y∈Hε (x)

|S( y, x, u(t))|
Sc( y, x)

. (39)

Avalue Z > 1 implies that there are neighboring points
y for which the bond-strain between points y and x lies
above the critical strain.

We consider a uniform discretization and offset the
crack vertically by h/100 where h = 0.125 mm is
the mesh size so that the crack line is not on the grid
line. For temporal discretization, we consider velocity-
verlet schemewith time step sizeΔt = 2.2μs and final
time T = 1.1 s. For mesh convergence, we rely on our
earlier work Jha and Lipton (2019b) where a similar
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Fig. 8 Setup for steady
state crack propagation
experiment. Here ε = 0.75
mm and v = 1.475 mm/s.
Domain is uniformly
discretized with mesh size
h = ε/6 = 0.125 mm

setup was considered and convergence with respect to
the mesh was shown. To see if the simulation changes
when using an unstructured mesh, we ran the same
problem on unstructured mesh consisting of linear tri-
angle elements.We first obtained themesh using Gmsh
library and then computed the nodal volume associated
to each vertex in the mesh. Pairs of vertices and vol-
umes form the particle mesh. The results were similar
to the case of uniform discretization.

We choose crack tip location as ameasure of conver-
gence of the temporal discretization. Here the crack tip
is recovered as a post processing step. In order to find
the crack tip at any given time step we search the sim-
ulation output data for vertices with damage Z greater
than 1 and the crack tip is the vertex such that

– No other vertex on the right side of the selected
vertex exists with Z > 1.

To illustrate time convergence, we consider the same
simulation but using a smaller time step Δt = 1.1μs.
The crack tip position is compared for the two different
time steps at times t = 0.9603, 0.9647, 0.9801 s. Here
the x-coordinates of the crack tip for Δt = 2.2μs and
Δt = 1.1μs are givenby0.011057, 0.02456, 0.072951
m and 0.011018, 0.024525, 0.072939 m respectively.
The simulation for the time step Δt = 2.2 is shown in
Fig. 9 at times t = 0.9603, 0.9647, 0.9801 s.

Crack velocities are computed over a longer time
step Δt , i.e. Crack veloci ty = Distance traveled
over timestep/Δt .HereΔt = 0.0022swhile the time
step used in the simulation is Δt = 2.2μs. The choice
of Δt smooths out the high frequency velocity fluctu-
ations due to bond breaking and delivers an averaged
crack velocity over an interval of length Δt .

When labeling plots we will apply the following
notation:

WV :=
∫

Γδ

W εV ε · nds,
Fpd := −Eε(Γδ)

Ė := d

dt

∫
Pδ

T ε + W εdx, (40)

where V ε is the crack velocity. All plotted quantities
are in units of Joules/s. We will also display the total
fracture energy at time t , denoted by PE , see (41), and
the total energy released by a crack of length l, given
by GE = l × Gc.

5.2 Results

The plot of crack velocity and deformation field sur-
rounding the crack tip centerline at three selected times
are shown in Fig. 9. Damage in the reference configura-
tion is plotted in Fig. 10. The figure shows that damage
is localized and corresponds to the crack in the nonlo-
cal model and is of width 2(ε + h). The crack veloc-
ity history given by Fig. 9 is in qualitative agreement
with experimental results (Goldman et al. 2010, Figure
2). There is an initial increase in crack speed, but as
waves reflect back from the boundary onto the crack
tip the velocity becomes roughly constant. To display
the crack opening displacement and the deformation of
the specimen we have added the displacement field at
the node to its nodal location. This is done for all nodal
points in the specimen, see Fig. 9.

Next, we focus on regime of near constant crack
speed corresponding to the time interval [0.9647, 0.9801].
As predicted from theory, see (21), −WV agrees with
VGc see Fig. 11. The simulation also shows that the
time rate of change in kinetic energy near the crack tip
is small and Fpd is close to VGc see Fig. 11. The bot-
tom Fig. in 11 shows that the rate of total energy Ė in
the constant crack speed regime is close to zero.

We compute the peridynamic energy of the failure
zone and compare it with the classic fracture energy.
For a crack of length at time t given by l(t), the classic
fracture energy (GE) is GE(t) = Gc × l(t). Recall the
failure zone at time t is denoted by
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Fig. 9 Left: Crack velocity vs crack length. b = 0.015 m is
the half width of the domain. cR = 5.502 m/s is the Rayleigh
wave speed. The crack velocity approaches steady state value
of 0.6 which is consistent with the experimental result in Gold-
man et al. (2010); Bouchbinder et al. (2014). This is due to the

fact that crack feels the boundary and wave reflection from the
boundary obstructs crack to acquire more velocity. Right: Crack
opening displacement and deformation in the specimen at times
t = 0.9603, 0.9647, 0.9801 s

Fig. 10 The crack together with process zone is given
for Z > 1 in the reference configuration at times t =
0.9603, 0.9647, 0.9801 s. Here the points where Z > 1 are
shaded white all other points are shaded black. The crack is a
thin region of thickness 2(ε + h)

FZ ε(t) and the peridynamic fracture energy (PE) is
given by

PE(t)

=
∫
FZ ε (t)

[
1

εdωd

∫
Hε (x)

| y − x|Wε(S( y, x, u)) d y
]
dx.

(41)

The peridynamic fracture energy is compared to the
classic fracture energy in Fig. 12 and is seen to be nearly
identical.

6 Change in internal energy on subdomains
containing the crack tip for the nonlocal model

In this section we recover the rate of change of inter-
nal energy (18) using the nonlocal version of Cauchy’s
equations of motion for a continuum body given by
(8). Consider the rectangular contour Γδ(t) of diame-
ter δ bordering the domain Pδ(t) containing the crack
tip. We suppose Pδ(t) is moving with the crack tip
speed V ε(t) see Fig. 6. It will be shown that the rate of
change of energy inside Pδ(t) for the nonlocal dynam-
ics is given by (18). We start by introducing a non-
local divergence theorem applied to the case at hand.
To expedite taking ε → 0 limits in the next section
we make the change of variables y = x + εξ where ξ
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Fig. 11 Top: Normalized
rate of energies given by
Fpd ,−WV and LEFM rate
V × Gc. Bottom: Negative
of rate of total contour
energy, −Ė . Here energy
rates are divided by cSGc,
where cs = 5.9m/s is the
shear wave speed and
Gc = 20.0J/m2 is the
critical energy release rate.
Plots are at time steps in the
constant crack speed time
interval [0.9647, 0.9801]. In
both plots, the limits in
y-axis are taken as
[−0.1, 1.0] where the upper
limit is the normalized
energy rate associated to
crack moving at shear wave
speed
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−Ė

belongs to the unit disk at the originH1(0) = {|ξ | < 1}
and e = ξ/|ξ |. The strain is written
uε(x + εξ) − uε(x)

ε|ξ |
:= Dε|ξ |

e uε, and

S( y, x, uε(t)) = Dε|ξ |
e uε · e,

(42)

and the work done in straining the material between
points y and x given by | y − x|∂SWε(S( y, x, uε(t)))
transforms in the new variables to

ε|ξ |∂SWε(Dε|ξ |
e uε · e)

= 2|ξ |J (|ξ |)
ε2ω2

h′(ε|ξ ||Dε|ξ |
e uε · e|2)Dε|ξ |

e uε · e.(43)

Wewill use the following nonlocal divergence theorem.
Nonlocal divergence theorem:

ε2
∫
Pδ (t)

∫
H1(0)

Dε|ξ |
−e

[
ε|ξ |∂SWε (Dε|ξ |

e uε · e)w(x) · e
]
dξdx

= ε2
∫
H1(0)

∫
(Pδ (t)−εξ)\Pδ (t)

∂SWε (Dε|ξ |
e uε · e)w(x) · e dxdξ

− ε2
∫
H1(0)

∫
Pδ (t)\(Pδ (t)−εξ)

∂SWε (Dε|ξ |
e uε · e)w(x) · e dxdξ.

(44)

This identity follows on applying the definition of
Dε|ξ |

−e ϕ = (ϕ(x − εξ) − ϕ(x))/ε|ξ | for scalar fields ϕ
andFubini’s theorem.When convenientwe set Aδ(t) =
D \ Pδ(t) and rewrite the last two terms of (44) in x
and y variables to get

ε2
∫
Pδ (t)

∫
H1(0)

Dε|ξ |
−e

[
ε|ξ |∂SWε(Dε|ξ |

e uε · e)w · e
]
dξdx

=
∫
Aδ (t)

∫
Hε (x)∩Pδ (t)

∂SWε(S( y, x, uε(t)))(w(x)

+ w( y)) · ey−x d ydx,

(45)

and we can rewrite (45) in x and ξ variables to get

ε2
∫
Pδ (t)

∫
H1(0)

Dε|ξ |
−e

[
ε|ξ |∂SWε(Dε|ξ |

e uε · e)w · e
]
dξdx

= ε2
∫
H1(0)

∫
(Pδ (t)−εξ)\Pδ (t)

∂SWε(Dε|ξ |
e uε · e)(w(x)

+ w(x + εξ)) · e dxdξ.

(46)

Lastly a straight forward manipulation in (46) delivers
the product rule:
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Product rule

ε2
∫
Pδ (t)

∫
H1(0)

Dε|ξ |
−e

[
ε|ξ |∂SWε(Dε|ξ |

e uε · e)w(x) · e
]
dξdx

= −ε2
∫
Pδ (t)

∫
H1(0)

2∂SWε(Dε|ξ |
e uε · e)e · w(x) dξdx

− ε2
∫
Pδ (t)

∫
H1(0)

ε|ξ |∂SWε(Dε|ξ |
e uε · e)Dε|ξ |

e w · e dξdx.

(47)

We now recover (18) from (8). Multiplying both
sides of (8) by u̇ε , integration over Pδ(t), and applying
the product rule gives
∫
Pδ (t)

∂t
ρ|u̇ε |2

2
dx

= ε2
∫
Pδ (t)

∫
H1(0)

2∂SWε (Dε|ξ |
e uε · e)u̇ε (x) · e dξdx

= −ε2
∫
Pδ (t)

∫
H1(0)

Dε|ξ |
−e

[
ε|ξ |∂SWε (Dε|ξ |

e uε · e)u̇ε (x) · e
]
dξdx

− ε2
∫
Pδ (t)

∫
H1(0)

ε|ξ |∂SWε (Dε|ξ |
e uε · e)Dε|ξ |

e u̇ε · e dξdx

(48)

Define the stress work density

W ε(x, t) = ε2
∫
H1(0)

ε|ξ |Wε(Dεn |ξ |
e uε · e) dξ. (49)

We observe that the change in stress work density with
respect to time (stress power density) is given by

Ẇ ε =
∫
H1(0)

ε3|ξ |∂SWε(Dε|ξ |
e uε · e)Dε|ξ |

e u̇ε · e dξ, (50)

and (48) becomes
∫
Pδ (t)

Ṫ ε + Ẇ ε dx

= −
∫
Pδ (t)

∫
H1(0)

ε2Dε|ξ |
−e

[
ε|ξ |∂SWε(Dε|ξ |

e uε · e)u̇ε · e
]
dξdx,

(51)

where Ṫ ε = ∂t (ρ|u̇ε |2/2).
Proceeding as in Freund (1990) and Willis (1975)

we find the change of internal energy of Pδ(t). We
consider the region R given by the tube in space time
swept out by Pδ(t) moving with constant velocity V ε

in the x1 direction. Here we consider the time interval
t1 < t < t2. We write
∫ t2

t1

∫
Pδ(t)

∂t (T
ε + W ε) dx dt

=
∫
R

∂t (T
ε + W ε) dx dt

=
∫

∂R
(T ε + W ε)

dt

dν
dS,

(52)

where we have applied the divergence theorem and dt
dν

is the direction cosine of the exterior normal to R in the
time direction and dS is the element of surface area.

We will parameterize the surface area element on the
sides of ∂R as dS = √

1 + (V ε)2ds dt and on the sides

dt

dν
= − V εe1 · n√

1 + (V ε)2

where n is the outward directed unit normal to ∂Pδ(t).
Applying this to (52) gives the identity∫ t2

t1

∫
Pδ(t)

∂t (T
ε + W ε) dx dt

= −
∫ t2

t1

∫
∂Pδ(t)

(T ε + W ε)e1 · nV ε ds dt

+
∫
Pδ(t2)

T ε + W ε dx −
∫
Pδ(t1)

T ε + W ε dx,

(53)

where the last two integrals are on the top and bottom
faces of R at t = t2 and t1 respectively. Now take t1 = t
and t2 = t +Δt divide byΔt and sendΔt → 0 in (53)
to get the identity∫

Pδ(t)
∂t (T

ε + W ε) dx = d

dt

∫
Pδ(t)

T ε + W ε dx

−
∫

∂Pδ(t)
(T ε + W ε)V εe1 · n ds.

(54)

This is equivalent to using Reynolds transport theorem
but it is obtained in a way that does not require u̇ε to
be differentiable in space. So (54) together with (51)
and (45) deliver the change in internal energy:

d

dt

∫
Pδ(t)

T ε + W ε dx

=
∫

∂Pδ(t)
(T ε + W ε)V εe1 · n ds

−
∫
Aδ(t)

∫
Hε (x)∩Pδ(t)

∂SWε(S( y, x, uε(t))) ey−x

· (u̇ε(x) + u̇ε( y)) d ydx

(55)

and (18) follows.

7 Formulas for peridynamic stress work and
convergence of peridynamic stress work and
elastic energy flux to those of the local model

In this section we establish (23). We start by discov-
ering the crucial identities (21) and (22). We denote
the four sides of the rectangular contour Γδ by Γi ,
i = 1, . . . , 4 in Fig. 13. There is no contribution of the
integrand to the integral on the lefthand side of (22) on
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Fig. 12 Peridynamic and classical fracture energy. The interval
along the y-axis is [0,GcL], where L is the length of domain and
is the maximum crack length

the sides 2 and 4 since e1 · n = 0 there. On side 3 the
potential and kinetic energy densities are bounded so∣∣∣∣
∫

Γ3

(T ε + W ε)V εe1 · n ds
∣∣∣∣ = O(δ). (56)

On side 1 we partition the contour Γ1 into three parts.
The first part is given by all points onΓ1 that are further
than ε away from x2 = 0 call this Γ1,+ and as before∣∣∣∣∣
∫

Γ1,+
(T ε + W ε)V εe1 · n ds

∣∣∣∣∣ = O(δ). (57)

The part of Γ1 with 0 ≤ x2 ≤ ε is denoted Γ +
1 and the

part with −ε ≤ x2 < 0 is denoted Γ −
1 and

∣∣∣∣∣
∫

Γ ±
1

T ε V εe1 · n ds
∣∣∣∣∣ = O(δ). (58)

Now we calculate∫
Γ +
1

W εV εe1 · n ds

= −V ε

∫
Γ +
1

W ε ds

= −V ε

∫
Γ +
1

∫
Hε (x)∩K+

ε

| y − x|Wε(S( y, x, uε(t))) d yds

− V ε

∫
Γ +
1

∫
Hε (x)∩K−

ε

| y − x|Wε(S( y, x, uε(t))) d yds

(59)

HereHε(x)∩K+
ε is the subset of y inHε(x) for which

the vector with end points y and x crosses the failure
zone centerline and Hε(x) ∩ K−

ε is the subset of y in
Hε(x) for which the vector with end points y and x
does not cross the failure zone centerline. Calculation

Fig. 13 The sides of the
contour Γδ is denoted by Γ1
through Γ4

2ε

Γ2

Γ3Γ1

Γ4

as in Sect. 3 gives∫
Γ +
1

∫
Hε (x)∩K+

ε

| y − x|Wε(S( y, x, uε(t))) d yds

=
∫ ε

0

∫ ε

z

∫ arccos(z/ζ )

0
Wε(S+)ζ 2 dψ dζ dz

= Gc
2

,

(60)

and it follows from calculating as in (15) we get that
∣∣∣∣∣
∫
Γ +
1

∫
Hε (x)∩K−

ε

| y − x|Wε(S( y, x, uεn (t))) d yds

∣∣∣∣∣ =O(δ).

(61)

From (60) and (61) we conclude that∫
Γ +
1

W εV εe1 · n ds = − V ε

∫
Γ +
1

W ε ds

= −V ε Gc
2

+ O(δ).

(62)

An identical calculation shows∫
Γ −
1

W εV εe1 · n ds = − V ε Gc
2

+ O(δ). (63)

and (21) and (22) follow.
To conclude we show

lim
ε→0

Eε(Γδ(t)) = −
∫

Γδ

CEu0n · u̇0 ds. (64)

Setting Δεξ u̇ε(x) = u̇ε(x) + u̇ε(x + εξ) we have

Eε(Γδ(t))

= ε2
∫
Pδ(t)

∫
H1(0)

Dε|ξ |
−e

[
ε|ξ |∂SWε(Dε|ξ |

e uε · e)u̇ε · e
]
dξdx

= ε2
∫
H1(0)

∫
(Pδ(t)−εξ)\Pδ(t)

∂SWε(Dε|ξ |
e uε · e)

Δεξ u̇ε(x) · e dxdξ.

(65)
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Integration in the ξ variable is over the unit disc
centered at the originH1(0). We split the unit disk into
its for quadrants Qi , i = 1, . . . , 4. The boundary Γδ

is the union of its four sides Γ j , j = 1, . . . , 4. Here
the left and right sides are Γ1 and Γ3 respectively and
the top and bottom sides areΓ2 andΓ4 respectively, see
Fig. 14.We choose n to be the outward pointing normal
vector to Pδ , t is the tangent vector to the boundary Γδ

and points in the clockwise direction, and e = ξ/|ξ |.
For ξ in Q1 the set of points x ∈ (Pδ(t) − εξ) \ Pδ(t)
is parameterized as x = tx + n(ε|ξ |e · n)r . Here x
lies on Γ1 ∪ Γ4 and 0 < r < 1 and the area element
is −(ε|ξ |e · n)dxdr . For ξ in Q2 the set of points x ∈
(Pδ(t) − εξ) \ Pδ(t) is again parameterized as x =
tx+n(ε|ξ |e·n)r where x lies onΓ3∪Γ4 and 0 < r < 1
and the area element is given by the same formula.
For ξ in Q3 we have the same formula for the area
element and parameterization and x lies onΓ3∪Γ4 with
0 < r < 1. Finally for ξ in Q4 we have again the same
formula for the area element and parameterization and
x lies onΓ1∪Γ2 with 0 < r < 1. This parameterization
and a change in order of integration delivers the formula
for Eε(Γδ(t)) given by

Eε(Γδ(t))

= −
∫
Γ1

∫ 1

0

∫
H1(0)∩(Q1∪Q4)

ε3|ξ |∂SWε(Dε|ξ |
e uε · e)

Δεξ u̇
ε(x) · en · e dξ dr dx

−
∫
Γ2

∫ 1

0

∫
H1(0)∩(Q3∪Q4)

ε3|ξ |∂SWε(Dε|ξ |
e uε · e)

Δεξ u̇
ε(x) · en · e dξ dr dx

−
∫
Γ3

∫ 1

0

∫
H1(0)∩(Q2∪Q3)

ε3|ξ |∂SWε(Dε|ξ |
e uε · e)

Δεξ u̇
ε(x) · en · e dξ dr dx

−
∫
Γ4

∫ 1

0

∫
H1(0)∩(Q1∪Q2)

ε3|ξ |∂SWε(Dε|ξ |
e uε · e)

Δεξ u̇
ε(x) · en · e dξ dr dx

+ O(ε).

(66)

When uε → u0 one applies Taylor series to each
integrand and passes to the ε = 0 limit to get that each
integrand in the limit is given by

4|ξ |
ω2

J (|ξ |)h′(0)Eu0e · e(u̇0 · e)(n · e) (67)

so

lim
ε→0

Eε(Γδ(t))

= − 1

ω2

∫
Γ1

∫ 1

0

∫
H1(0)∩(Q1∪Q4)

4|ξ |J (|ξ |)h′(0)Eu0e

· e(u̇0 · e)(n · e) dξ dr dx

Fig. 14 Contour Γδ split
into four sides

Γ2

Γ3Γ1

Γ4

− 1

ω2

∫
Γ2

∫ 1

0

∫
H1(0)∩(Q3∪Q4)

4|ξ |J (|ξ |)h′(0)Eu0e

· e(u̇0 · e)(n · e) dξ dr dx

− 1

ω2

∫
Γ3

∫ 1

0

∫
H1(0)∩(Q2∪Q3)

4|ξ |J (|ξ |)h′(0)Eu0e

· e(u̇0 · e)(n · e) dξ dr dx

− 1

ω2

∫
Γ4

∫ 1

0

∫
H1(0)∩(Q1∪Q2)

4|ξ |J (|ξ |)h′(0)Eu0e

· e(u̇0 · e)(n · e) dξ dr dx . (68)

Noting that the integrand has radial symmetry in the
ξ variable and (15) (see the calculation below Lemma
6.6 of Lipton (2016)) one obtains

lim
ε→0

Eε(Γδ(t)) = −
4∑

i=1

1

2

∫
Γi

2CEu0n · u̇0 dx, (69)

and (64) follows.
Identical calculations give (37)whenweuse the con-

tour Sδ and compute the change in energy internal to
Qδ in Fig. 7.

8 Conclusions

It has been shown for the nonlocal model that that the
net flux of stress work density through a small con-
tour surrounding the crack is the power per unit length
needed to create new fracture surface. This is derived
directly from Cauchy’s equations of motion for a con-
tinuum body (8) (see Sect. 4). In this paper the power
balance and kinetic relation given by (27), (28) is not
postulated but instead recovered directly from (18) by
taking the ε = 0 limit. For this case the generalized
Irwin relationship is shown to be a consequence of the
cohesive dynamics in the ε = 0 limit. The recovery
is possible since the nonlocal model is well defined
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over the failure zone. This suggests that the double well
potential of cohesive dynamics provides a phenomeno-
logical description of the process zone at mesoscopic
length scales. We have illustrated the ideas using the
simplest double well energy for a bond based peridy-
namic formulation. Future investigations will consider
state based peridynamic models.

Last we mention that if one fixes the horizon then
the ratio rc to r+ will affect the size of the process
zone hence a brittle to quasi brittle behavior can be
expected depending on the ratio. On the other hand for
any fixed ratio of rc to r+ the process zone goes to
zero as the horizon goes to zero and we recover brittle
fracture, this is shown theoretically in Lipton (2016). In
addition the fracture toughness for the nonlocal model
depends on the area underneath the force strain curve
and is insensitive to the ratio. This is why this ratio does
not show up in the calculations associated with ε → 0.
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