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A B S T R A C T

This work considers the nodal finite element approximation of peridynamics, in which the
nodal displacements satisfy the peridynamics equation at each mesh node. For the nonlinear
bond-based peridynamics model, it is shown that, under the suitable assumptions on an exact
solution, the discretized solution associated with the central-in-time and nodal finite element
discretization converges to a solution in the 𝐿2 norm at the rate 𝐶1𝛥𝑡 + 𝐶2ℎ2∕𝜖2. Here, 𝛥𝑡,
ℎ, and 𝜖 are time step size, mesh size, and the size of the horizon or nonlocal length scale,
respectively. Constants 𝐶1 and 𝐶2 are independent of ℎ and 𝛥𝑡 and depend on norms of the
solution and nonlocal length scale. Several numerical examples involving pre-crack, void, and
notch are considered, and the efficacy of the proposed nodal finite element discretization is
analyzed.

1. Introduction

Peridynamics is a reformulation of classical continuum mechanics introduced by Silling in [1,2]. The strain inside the medium
is expressed in terms of displacement differences as opposed to the displacement gradients, and the internal force at a material
point is due to the sum of all pairwise interactions between a point and its neighboring points. The new formulation bypasses
the difficulty incurred by displacement gradients and discontinuities, as in the case of classical fracture theories. The nonlocal
fracture theory has been applied numerically to model the complex fracture phenomenon in materials, see, e.g., [3–16]. [17] is
referred for a comprehensive survey. In peridynamics, every point interacts with its neighbors inside a ball of fixed radius called
the horizon. The size of the horizon sets the length scale of nonlocal interaction. When the forces between points are linear and
when the nonlocal length scale tends to zero, it is seen that peridynamics converge to the classical linear elasticity, [5,18–20]. For
nonlinear forces, in which the bond behaves like an elastic spring for small strains and softens with increasing strains, peridynamics
converges in the small horizon limit to linear elastic fracture mechanics, where the material has a sharp crack, and away from
a sharp crack the material is governed by linear elastodynamics, see [15,21–23]. For simulation of fracture using peridynamics,
there are several choices, e.g., meshfree discretization [24,25] (see [26] for numerical convergence test and overview of existing
meshfree methods for peridynamics), commonly used nodal-based discretization (similar to finite difference approximation of partial
differential equations) [1,27–30], and finite element approximations and their variants have been used in works such as [31–40].
To reduce the computational cost associated with the nonlocal interaction, coupled local (classical continuum mechanics) and
peridynamics equations are also considered in which the local model is used away from cracking zone while the rest of the domain
is modeled using peridynamics, see [41,42].
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Existing meshfree methods and methods similar to finite difference discretization where the nonlocal integral is approximated
using the node–node interaction offer multiple advantages over standard finite element approximation of peridynamics, such as
asy implementation and reduced computational cost. However, when compared to the finite element methods, meshfree methods
uffer from poor numerical convergence, a lack of continuous representation of the displacement field, which could be crucial in
ost-processing, and difficulty in coupling peridynamics with other physics (e.g., heat equation and diffusion equation for corrosion).

Motivated by the above arguments, this work considers nodal finite element approximation (or, in brief, NFEA) that overcomes
some of the limitations of the meshfree method while retaining the key features of finite element approximation, such as continuous
representation of displacement, convergence estimates, and suitability for combining peridynamics with multiphysics models. In
the nodal finite element approximation, the equation for the discretized displacement field is written at each mesh node. In
contrast, in the standard finite element approximation (FEA) of peridynamics, the approximate solution satisfies the variational
form of the peridynamics equation. Node-based calculations considered in this work are quite suitable for peridynamics/nonlocal
equations, where a point nonlocally interacts with neighboring points at a distance larger than the mesh size. Classical finite element
iscretization of peridynamics, e.g., [43,44], involves computing interactions of a quadrature point with all neighboring quadrature

points within a nonlocal neighborhood (typically a ball of radius greater than the mesh size). Thus, the computation cost is large and
rohibitive if one chooses higher-order quadrature approximations. In contrast, the nodal finite element discretization considered in
his work applies a discretized equation at each node, and nonlocal interactions are computed between the mesh nodes. Comparing
he discretized equations in NFEA and FEA, NFEA includes the appearance of an additional error in representing the peridynamics
orce; see Section 3.2.

The main goal of this work is to perform an error analysis of the NFEA approximation and show a-priori convergence of numerical
solutions. The convergence of the numerical approximation is established by combining our previous work on a-priori convergence
of finite element approximation of peridynamics [43,44] with new estimates that control the additional error introduced by nodal
finite element approximation. For suitable initial conditions and boundary conditions, the NFEA solutions are shown to converge at
a rate 𝐶1𝛥𝑡+𝐶2ℎ2, where 𝛥𝑡 gives the size of the time step and ℎ mesh size. Here, 𝐶1 and 𝐶2 are constants independent of 𝛥𝑡 and ℎ
and depend on the nonlocal length scale 𝜖, the norm of the exact solution, choice of influence function, and the peridynamics force
potential (anti-derivative) 𝜓 . Several fracture problems involving pre-crack, void, and notch are presented. These problems not only
highlight the efficacy of the NFEA but also show the utility of peridynamics in nucleation and crack propagation.

The solution of the nonlocal problem is more regular than the local solution. For an evolution over the time interval [0, 𝑡𝐹 ] a
solution of the nonlocal problem is in 𝐶2([0, 𝑡𝐹 ];𝐻2(𝐷) ∩𝐻1

0 (𝐷)), see [43,44]. On the other hand the 𝜖 = 0 limit solution with the
limit taken with respect to the 𝐶([0, 𝑡𝐹 ];𝐿2(𝐷)) topology was shown to be in the space 𝐶([0, 𝑡𝐹 ];𝑆 𝐵 𝐷(𝛺)), see [21]. For a definition
of 𝑆 𝐵 𝐷(𝛺), see [45]. The space of Special Functions of Bounded Deformation 𝑆 𝐵 𝐷(𝛺) as well as 𝑆 𝐵 𝑉 (𝛺) is used to describe
displacement fields in fractured media, see [46]. In this work, the location of the large strain represents the crack. The simulations
show that the regions of high strain are localized to thin regions of width on the order of the peridynamic horizon. The theoretical
rror bound deteriorates with the horizon, reflected in the growth of constants appearing in the a-priori error as the horizon becomes
maller. Motivated by these considerations, an alternate nodal interpolation given by the Clément interpolant is introduced. An
mproved a-priori convergence of nodal finite element approximation is proved. The implementation of Clément interpolations in
FEA and a-posteriori error estimates will be discussed in future work. It is seen that the nodal finite element approximation using
lément interpolation is asymptotically compatible under the assumption the 𝐿∞ norm of the solution is bounded uniformly with
espect to the horizon. This assumption is strongly supported in the simulations, Section 7.

Outline of the article. In Section 2, bond-based peridynamics theory is described, and the peridynamics equation of motion is pre-
sented. Section 3 develops nodal finite element approximation, and it is compared with the standard finite element approximation.
n Section 4, a-priori convergence of an alternate nodal finite element approximation for the nonlinear bond-based model is stated
nd proved. In Section 5, an a-priori convergence of the Clément nodal finite element approximation is proved. In Section 6, the

method is shown to be asymptotically compatible. Numerical experiments involving pre-crack, void, and notch are presented in
Section 7. Conclusions are drawn in Section 8.

2. Bond-based peridynamics

Let 𝐷 ⊂ R𝑑 , for 𝑑 = 2, 3, be the material domain and 𝜖 > 0 denote the size of the horizon. In the peridynamics formulation, a
material point 𝒙 ∈ 𝐷 interacts with all the material points within a neighborhood of 𝒙. Neighborhood of a point 𝒙 is taken to be
the ball of radius 𝜖 centered at 𝒙 and is denoted by 𝐻𝜖(𝒙) = {𝒚 ∈ R𝑑 ∶ |𝒚 − 𝒙| < 𝜖}. In what follows, 𝒙 ∈ 𝐷 denote the material
point, 𝒖(𝒙, 𝑡) the displacement of 𝒙 at time 𝑡 for 𝑡 ∈ [0, 𝑡𝐹 ], and 𝒛(𝒙, 𝑡) = 𝒙+ 𝒖(𝒙, 𝑡) current coordinate of 𝒙. The bond strain (or bond
tretch or pairwise strain) between material points 𝒙 and 𝒚 is defined as

𝑆̃(𝒚,𝒙, 𝑡) = |𝒛(𝒚, 𝑡) − 𝒛(𝒙, 𝑡)| − |𝒚 − 𝒙|
|𝒚 − 𝒙|

. (1)

For prototype microelastic brittle (PMB) material, the pairwise force between 𝒙 and 𝒚 takes the form (see [1,10])

𝒇̃ 𝑝𝑚𝑏(𝒚,𝒙, 𝑡) = 𝑐 𝐽 𝜖(|𝒚 − 𝒙|)𝑆̃(𝒚,𝒙, 𝑡)𝜇(𝑆̃(𝒚,𝒙, 𝑡), 𝑡) 𝒛(𝒚, 𝑡) − 𝒛(𝒙, 𝑡)
|𝒛(𝒚, 𝑡) − 𝒛(𝒙, 𝑡)| . (2)
2 
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Here, 𝑐 is a constant that depends on the elastic strength of a material, 𝐽 𝜖 = 𝐽 𝜖(|𝒚 − 𝒙|) the influence function, and 𝜇(𝑆 , 𝑡) the
bond-breaking function that models the breakage of the bond if the pairwise strain exceeds certain threshold strain:

𝜇(𝑆̃(𝒚,𝒙, 𝑡), 𝑡) =
{

1, if 𝑆̃(𝒚,𝒙, 𝜏) < 𝑆𝑐 (𝒚,𝒙) ∀𝜏 ≤ 𝑡,
0, otherwise.

(3)

In the above, 𝑆𝑐 is the critical bond strain between the material points 𝒚,𝒙. In the PMB model, 𝑆𝑐 is independent of 𝒚,𝒙. In general,
the value of the critical bond strain 𝑆𝑐 depends on the critical fracture energy 𝐺𝑐 and the elastic strength of the material. The total
force at 𝒙 is given by the sum of the pairwise forces in the neighborhood of 𝒙, i.e.,

𝑭̃ 𝑝𝑚𝑏(𝒙, 𝑡) = ∫𝐻𝜖 (𝒙)∩𝐷
𝒇̃ 𝑝𝑚𝑏(𝒚,𝒙, 𝑡)𝑑𝒚. (4)

Under the small deformation assumption given by |𝒖(𝒙) − 𝒖(𝒚)|≪ 1, the bond strain 𝑆̃(𝒚,𝒙, 𝑡) can be approximated by linearizing
𝑆̃ as follows

𝑆(𝒚,𝒙, 𝑡) = 𝒖(𝒚, 𝑡) − 𝒖(𝒙, 𝑡)
|𝒚 − 𝒙|

⋅
𝒚 − 𝒙
|𝒚 − 𝒙|

≈ 𝑆̃(𝒚,𝒙, 𝑡) (5)

and the pairwise force taking the form

𝒇 𝑝𝑚𝑏(𝒚,𝒙, 𝑡) = 𝑐 𝐽 𝜖(|𝒚 − 𝒙|)𝑆(𝒚,𝒙, 𝑡)𝜇(𝑆(𝒚,𝒙, 𝑡), 𝑡) 𝒚 − 𝒙
|𝒚 − 𝒙|

, (6)

where the force now acts along the bond vector in the reference configuration, i.e., 𝒚−𝒙
|𝒚−𝒙| . The total force at a material point is simply

𝑭 𝑝𝑚𝑏(𝒙, 𝑡) = ∫𝐻𝜖 (𝒙)∩𝐷
𝒇 𝑝𝑚𝑏(𝒚,𝒙, 𝑡)𝑑𝒚. (7)

In this treatment, ⋅̃ , e.g., pairwise strain 𝑆̃ and force 𝑭̃ 𝑝𝑚𝑏, indicates the quantity associated with the large deformation, whereas
the notations without ,̃ e.g., 𝑆 and 𝑭 𝑝𝑚𝑏, correspond to the small deformation assumption.

In the PMB model, the interaction between two material points comes to an abrupt stop as soon as the pairwise strain exceeds the
ritical strain. In contrast, pairwise force considered in [21,22] regularizes the pairwise strain-force profile such that the bond under

small strains behaves like a linear elastic material, and for larger strains, yields and softens with increasing strain, and eventually,
he bond breaks for large strains. The force model introduced in [21,22] is referred to as the regularized nonlinear peridynamics
RNP) material model. The pairwise potential – force given by the derivative of the potential – in the RNP model is defined by

𝜖(𝑆(𝒚,𝒙, 𝑡)) = 1
w𝑑𝜖𝑑

𝜔(𝒙)𝜔(𝒚)
𝐽 𝜖(|𝒚 − 𝒙|)
𝜖|𝒚 − 𝒙|

𝜓(|𝒚 − 𝒙|𝑆(𝒚,𝒙, 𝑡)2). (8)

Here w𝑑 = |{𝒚 ∈ R𝑑 ∶ |𝒚| < 1}| = |𝐻1(𝟎)| is the volume of a unit ball in the dimension 𝑑, i.e. w𝑑 = 𝜋 in 2-d and w𝑑 = 4𝜋∕3 in 3-d.
𝜔 ∶ 𝐷 → [0, 1] is a boundary function which takes the value 1 for all 𝒙 ∈ 𝐷𝑖 ∶= {𝒚 ∈ 𝐷 ∶ dist (𝒚, 𝜕 𝐷) > 𝜖} and decays smoothly from
1 to 0 as 𝒙 approaches the boundary 𝜕 𝐷. The potential function 𝜓 ∶ R+ → R is smooth, positive, and concave. For such a choice of
𝜓 , the profile of potential 𝜖 as a function of strain 𝑆 is shown in Fig. 1. The pairwise force is written as (see [21,22])

𝒇 𝑟𝑛𝑝(𝒚,𝒙, 𝑡) = 2 𝜕𝑆𝜖(𝑆(𝒚,𝒙, 𝑡)) 𝒚 − 𝒙
|𝒚 − 𝒙|

= 4
w𝑑𝜖𝑑

𝜔(𝒙)𝜔(𝒚)
𝐽 𝜖(|𝒚 − 𝒙|)

𝜖
𝜓 ′(|𝒚 − 𝒙|𝑆(𝒚,𝒙, 𝑡)2)𝑆(𝒚,𝒙, 𝑡) 𝒚 − 𝒙

|𝒚 − 𝒙|
.

(9)

The critical strain 𝑆𝑐 depends on the distance between material points 𝒚 and 𝒙, and it is given by 𝑆𝑐 (𝒚,𝒙) = ±𝑟∗∕√|𝒚 − 𝒙|. 𝑟∗ > 0 is
the inflection point of function 𝑟↦ 𝜓(𝑟2). The total force at 𝒙 is given by

𝑭 𝑟𝑛𝑝(𝒙, 𝑡) = ∫𝐻𝜖 (𝒙)∩𝐷
𝒇 𝑟𝑛𝑝(𝒚,𝒙, 𝑡)𝑑𝒚. (10)

Figs. 2(a) and 2(b) shows PMB and RNP force profiles. The RNP model is amenable to a-priori convergence rate analysis and is
investigated in this paper.

2.1. Peridynamics equation of motion using the RNP model

In the rest of the article, the pairwise strain 𝑆 defined in (5) is considered, and the RNP model is employed where the pairwise
orce is given by (9). The peridynamics equation of motion for the displacement field 𝒖 ∶ 𝐷 × [0, 𝑡𝐹 ] → R𝑑 is given by the Newton’s

second law as follows

𝜌𝜕2𝑡𝑡𝒖(𝒙, 𝑡) = 𝑭 (𝒖)(𝒙, 𝑡) + 𝒃(𝒙, 𝑡), (11)

where, 𝜌 is the density, 𝑭 (𝒖)(𝒙, 𝑡) peridynamics force defined in (10), and 𝒃(𝒙, 𝑡) the body force per unit volume. Let 𝜕 𝐷 be the
boundary of the material domain 𝐷. For the analysis, the Dirichlet boundary condition is assumed, i.e.,

𝒖(𝒙, 𝑡) = 0, ∀𝒙 ∈ 𝜕 𝐷 ,∀𝑡 ∈ [0, 𝑡𝐹 ]. (12)
3 
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Fig. 1. Profile of pairwise potential 𝜖 (𝑆) defined in (8). Here 𝐶 = lim𝑆→∞ 𝜖 (𝑆).

Fig. 2. (a) Prototype microelastic brittle (PMB) material. Here, 𝑓𝑝𝑚𝑏(𝑆) is a scalar such that the bond force is 𝒇 𝑝𝑚𝑏(𝒚,𝒙, 𝑡; 𝒖) = 𝑓𝑝𝑚𝑏(𝑆)
𝒚−𝒙
|𝒚−𝒙|

; see (6). (b) Regularized
nonlinear peridynamics (RNP) material.

The initial conditions for displacement and velocities are

𝒖(𝒙, 0) = 𝒖0(𝒙) and 𝜕𝑡𝒖(𝒙, 0) = 𝒗0(𝒙),∀𝒙 ∈ 𝐷 . (13)

In the rest of the article, density 𝜌 is assumed to be constant.
For the RNP model, the initial boundary value problem given by (11) with (12) and (13) for 𝒖0, 𝒗0 ∈ 𝐻2(𝐷) ∩ 𝐻1

0 (𝐷) and
∈ 𝐶2([0, 𝑡𝐹 ];𝐻2(𝐷) ∩ 𝐻1

0 (𝐷)), is shown to be well-posed in the space 𝐶2([0, 𝑡𝐹 ];𝐻2(𝐷) ∩ 𝐻1
0 (𝐷)); see [44, Theorem 3.2]. Here,

1
0 (𝐷) is given by the space of functions in 𝐻1(𝐷) taking value zero on the boundary 𝜕 𝐷. In what follows, ‖ ⋅‖ and ‖ ⋅‖𝑛 will denote

he 𝐿2(𝐷) and 𝐻𝑛(𝐷) norms, for 𝑛 = 1, 2, respectively.

3. Finite element approximation

Consider a discretization ℎ of the domain 𝐷 by triangular (in 2-d) or tetrahedral (in 3-d) elements, where ℎ denotes the size of
esh assuming that the elements are conforming and the mesh is shape regular. Let 𝑉ℎ and 𝑉ℎ, with 𝑉ℎ ⊂ 𝑉ℎ, denote the spaces of

unctions spanned by continuous piecewise linear interpolation over mesh ℎ such that 𝑉ℎ ⊂ 𝐻1(𝐷) and 𝑉ℎ ⊂ 𝐻1
0 (𝐷). It is further

ssumed that there exist constants 𝑐1, 𝑐2 > 0 such that

𝑐1
𝑁
∑

𝑖=1
|𝒖(𝒙𝑖)|2 ≤ ‖𝒖‖2 ≤ 𝑐2

𝑁
∑

𝑖=1
|𝒖(𝒙𝑖)|2, ∀𝒖 ∈ 𝑉ℎ, (14)

where, 𝑁 is the total number of mesh nodes, and 𝒙𝑖 is the material coordinate of 𝑖th node.
For a continuous function 𝒖 on 𝐷̄, its continuous piecewise linear interpolant on ℎ is defined as

ℎ(𝒖)
|

|

|

|𝑇
= 𝑇 (𝒖) ∀𝑇 ∈ ℎ, (15)

where, 𝑇 (𝒖) is the local interpolant associated with the finite element 𝑇 such that

𝑇 (𝒖) =
∑

𝑖∈𝑁𝑇

𝒖(𝒙𝑇𝑖 )𝜙
𝑇
𝑖 . (16)
4 
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Here, 𝑁𝑇 is the list of nodes as a vertex of the element 𝑇 , 𝒙𝑇𝑖 the position of 𝑖th vertex of the element 𝑇 , and 𝜙𝑇𝑖 the linear
interpolation function associated with the vertex 𝑖.

Application of Theorem 4.4.20 and Remark 4.4.27 in [47] gives the bound on the interpolation error in 𝐿2 norm as follows

‖𝒖 − ℎ(𝒖)‖ ≤ 𝑐3ℎ
2
‖𝒖‖2, ∀𝒖 ∈ 𝐻2(𝐷)2 (17)

and in 𝐿∞ norm

sup
𝒙

|𝒖(𝒙) − ℎ(𝒖)(𝒙)| ≤ 𝑐4ℎ
2 sup
𝒙∈𝐷

|

|

|

∇2𝒖(𝒙)||
|

, ∀𝒖 ∈ 𝐶2(𝐷)2. (18)

Here, constants 𝑐3, 𝑐4 are independent of mesh size ℎ.

Projection onto 𝑉ℎ. Let 𝒓ℎ(𝒖) denote the projection of 𝒖 ∈ 𝐻1
0 (𝐷) on 𝑉ℎ with respect to the 𝐿2 norm. It is defined by

‖𝒖 − 𝒓ℎ(𝒖)‖ = inf
𝒖̃∈𝑉ℎ

‖𝒖 − 𝒖̃‖ (19)

and satisfies the orthogonality property

(𝒓ℎ(𝒖), 𝒖̃) = (𝒖, 𝒖̃), ∀𝒖̃ ∈ 𝑉ℎ. (20)

Since ℎ(𝒖) ∈ 𝑉ℎ, from (17) it follows that

‖𝒖 − 𝒓ℎ(𝒖)‖ ≤ ‖𝒖 − ℎ(𝒖)‖ ≤ 𝑐3ℎ
2
‖𝒖‖2, ∀𝒖 ∈ 𝐻2(𝐷). (21)

Clément interpolation. The Clément interpolant [48] is a linear operator 𝐶ℎ ∶ 𝐿2(𝛺)2 → 𝑉ℎ and to define it, let 𝑆𝑖 denote the
set of elements 𝑇 with a common vertex 𝑖. Let 1(𝑆𝑖) be the space of continuous piecewise linear finite elements on 𝑆𝑖. Denote
𝑃𝑖 ∶ 𝐿2(𝑆𝑖)2 → 1(𝑆𝑖) as the 𝐿2-projection. Given 𝒖 ∈ 𝐿2(𝛺)2

𝐶𝑇 (𝒖) =
∑

𝑖∈𝑁𝑇

𝑖(𝒖)(𝒙𝑇𝑖 )𝜙
𝑇
𝑖 , (22)

the bound on the interpolation error is
‖𝒖 − 𝐶ℎ (𝒖)‖𝑡 ≤ 𝐶 ℎ𝑠−𝑡‖𝒖‖𝑠, ∀𝒖 ∈ 𝐻𝑠(𝐷)2, (23)

for 0 ≤ 𝑡 ≤ 𝑠 ≤ 2 and 𝑡 ≤ 1, where 𝑡 = 0 corresponds to the 𝐿2 norm. Here, the constant 𝐶 is independent of mesh size ℎ. On writing
𝐶ℎ (𝒖) + 𝒖 − 𝒖 together with the triangle inequality delivers the stability

‖𝐶ℎ (𝒖)‖𝑡 ≤ 𝐶 ℎ𝑠−𝑡‖𝒖‖𝑠, ∀𝒖 ∈ 𝐻𝑠(𝐷)2, (24)

3.1. Nodal finite element approximation

Let 𝛥𝑡 be the size of the time step and 𝑡𝑘 = 𝑘𝛥𝑡 be the time at step 𝑘. Let {𝑼𝑘
𝑖 }1≤𝑖≤𝑁 be the set of approximate nodal displacements

at time step 𝑘. Associated to the discrete set {𝑼𝑘
𝑖 }1≤𝑖≤𝑁 , displacement field 𝒖𝑘ℎ ∈ 𝑉ℎ can be defined as follows

𝒖𝑘ℎ(𝒙)
|

|

|

|𝑇
=

∑

𝑖∈𝑁𝑇

𝑼𝑘
𝑖 𝜙𝑖(𝒙), 𝒙 ∈ 𝑇 , ∀𝑇 ∈ ℎ. (25)

The discrete solution satisfies, for all 1 ≤ 𝑖 ≤ 𝑁 and for 𝑘 ≥ 1,

𝜌
𝑼𝑘+1
𝑖 − 2𝑼𝑘

𝑖 + 𝑼𝑘−1
𝑖

𝛥𝑡2
= 𝑭 (𝒖𝑘ℎ)(𝒙𝑖) + 𝒃(𝒙𝑖, 𝑡𝑘) (26)

and, for 𝑘 = 0 (first time step),

𝜌
𝑼 1
𝑖 − 𝒖0(𝒙𝑖)
𝛥𝑡2

= 1
2
𝑭 (𝒖0ℎ)(𝒙𝑖) +

1
𝛥𝑡

𝒗0(𝒙𝑖) + 1
2
𝒃(𝒙𝑖, 0). (27)

In the above, 𝒖0 and 𝒗0 are the initial conditions.
Fix 𝒙 ∈ 𝑇 , where 𝑇 ∈ ℎ. By multiplying interpolation function 𝜙𝑖(𝒙) to both sides of (26) and summing over 𝑖 ∈ 𝑁𝑇 , it follows

that

𝜌
𝒖𝑘+1ℎ (𝒙) − 2𝒖𝑘ℎ(𝒙) + 𝒖𝑘−1ℎ (𝒙)

𝛥𝑡2
|

|

|

|𝑇
=

∑

𝑖∈𝑁𝑇

𝑭 (𝒖𝑘ℎ)(𝒙𝑖)𝜙𝑖(𝒙) +
∑

𝑖∈𝑁𝑇

𝒃(𝒙𝑖, 𝑡𝑘)𝜙𝑖(𝒙), (28)

Let 𝑭 ℎ(𝒖𝑘ℎ) and 𝒃𝑘ℎ be the continuous piecewise linear interpolation of 𝑭 (𝒖𝑘ℎ) and 𝒃(𝑡𝑘), i.e.,

𝑭 ℎ(𝒖𝑘ℎ)(𝒙)
|

|

|

|𝑇
=

∑

𝑖∈𝑁𝑇

𝑭 (𝒖𝑘ℎ)(𝒙𝑖)𝜙𝑖(𝒙), 𝒙 ∈ 𝑇 , ∀𝑇 ∈ ℎ,

𝒃𝑘ℎ(𝒙)
|

|

|

|𝑇
=

∑

𝑖∈𝑁𝑇

𝒃(𝒙𝑖, 𝑡𝑘)𝜙𝑖(𝒙), 𝒙 ∈ 𝑇 , ∀𝑇 ∈ ℎ.
5 



P.K. Jha et al.

i

i

d

Computer Methods in Applied Mechanics and Engineering 434 (2025) 117519 
Then, (28) can be written compactly as

𝜌
𝒖𝑘+1ℎ − 2𝒖𝑘ℎ + 𝒖𝑘−1ℎ

𝛥𝑡2
= 𝑭 ℎ(𝒖𝑘ℎ) + 𝒃𝑘ℎ. (29)

3.2. Comparison of NFEA with the standard FEA

Let 𝒖̂𝑘ℎ ∈ 𝑉ℎ be the standard FEA solution that satisfies (see [44]), for all test functions 𝒖̃ ∈ 𝑉ℎ and 𝑘 ≥ 1,
(

𝜌
𝒖̂𝑘+1ℎ − 2𝒖̂𝑘ℎ + 𝒖̂𝑘−1ℎ

𝛥𝑡2
, 𝒖̃

)

= (𝑭 (𝒖̂𝑘ℎ), 𝒖̃) + (𝒃(𝑡𝑘), 𝒖̃). (30)

To see the difference between the above discretization and the nodal FEA, multiply (29) with the test function 𝒖̃ ∈ 𝑉ℎ and integrate
over a domain 𝐷 to have

(

𝜌
𝒖𝑘+1ℎ − 2𝒖𝑘ℎ + 𝒖𝑘−1ℎ

𝛥𝑡2
, 𝒖̃

)

= (𝑭 ℎ(𝒖𝑘ℎ), 𝒖̃) + (𝒃𝑘ℎ, 𝒖̃). (31)

Thus, in the NFEA, the exact peridynamics force 𝑭 and body force 𝒃 are replaced by their continuous piecewise linear interpolation
𝑭 ℎ and 𝒃ℎ, respectively. By doing so, NFEA reduces the computational complexity of computing the integral of the product of
peridynamics force and test function in (30) but at the cost of an additional discretization error; compare (𝑭 (𝒖𝑘ℎ), 𝒖̃) and (𝒃𝑘, 𝒖̃)
n (30) with (𝑭 ℎ(𝒖𝑘ℎ), 𝒖̃) and (𝒃𝑘ℎ, 𝒖̃) in (29), respectively.

Next, a-priori convergence of NFEA solution 𝒖𝑘ℎ to the exact solution 𝒖(𝑡𝑘) in the limit mesh size, ℎ, and time step, 𝛥𝑡, tending to
zero is shown.

4. A-priori convergence of nodal FEA for nonlinear peridynamics models

This section establishes the convergence of the NFEA approximation to the exact peridynamics solution. The error analysis
s focused on nonlinear peridynamics force (RNP), see (10), and exact solutions (displacement and velocity) are assumed to be
𝒖, 𝒗 ∈ 𝐶2 ([0, 𝑡𝐹 ];𝐻2(𝐷) ∩𝐻1

0 (𝐷)
)

. Before the main result is presented, equations for errors are obtained, and the consistency of the
numerical discretization is shown.

Eq. (31) is equivalent to (29) and it can be decoupled into two equations by introducing 𝒗𝑘ℎ ∈ 𝑉ℎ, 𝒗𝑘ℎ being the approximate
velocity field at time 𝑡𝑘, as follows

(

𝒖𝑘+1ℎ − 𝒖𝑘ℎ
𝛥𝑡

, 𝒖̃

)

= (𝒗𝑘+1ℎ , 𝒖̃), ∀𝒖̃ ∈ 𝑉ℎ,

(

𝒗𝑘+1ℎ − 𝒗𝑘ℎ
𝛥𝑡

, 𝒖̃

)

= (𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘ℎ), 𝒖̃) + (𝒃𝑘ℎ, 𝒖̃), ∀𝒖̃ ∈ 𝑉ℎ.

(32)

Similar to [44, Section 5], 𝐿2 projections of the exact displacement and velocity into 𝑉ℎ are compared with the approximate
isplacement and velocity, and the errors are defined as

𝒆𝑘𝑢,ℎ = 𝒖𝑘ℎ − 𝒓ℎ(𝒖𝑘), 𝒆𝑘𝑣,ℎ = 𝒗𝑘ℎ − 𝒓ℎ(𝒗𝑘),

where 𝒖𝑘 is the exact solution at time 𝑡𝑘 = 𝑘𝛥𝑡, 𝒗𝑘 = 𝜕𝑡𝒖(𝑡𝑘), and 𝒓ℎ(𝒖) ∈ 𝑉ℎ is the 𝐿2 projection of 𝒖 defined in (19). Using the
peridynamics equation of motion (11), (32), and property (20) of projection 𝒓ℎ, it can be shown that

(𝒆𝑘+1𝑢,ℎ , 𝒖̃) = (𝒆𝑘𝑢,ℎ, 𝒖̃) + 𝛥𝑡(𝒆𝑘+1𝑣,ℎ , 𝒖̃) + 𝛥𝑡(𝝉𝑘𝑢,ℎ, 𝒖̃), (33)

(𝒆𝑘+1𝑣,ℎ , 𝒖̃) = (𝒆𝑘𝑣,ℎ, 𝒖̃) + 𝛥𝑡(𝑭 𝑟𝑛𝑝(𝒖𝑘) − 𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘ℎ), 𝒖̃) + 𝛥𝑡(𝝉𝑘𝑣,ℎ, 𝒖̃) + 𝛥𝑡(𝒃𝑘ℎ − 𝒃(𝑡𝑘), 𝒖̃), (34)

where, 𝝉𝑘𝑢,ℎ, 𝝉
𝑘
𝑣,ℎ are consistency errors and take the form

𝝉𝑘𝑢,ℎ = 𝜕𝒖𝑘+1
𝜕 𝑡 − 𝒖𝑘+1 − 𝒖𝑘

𝛥𝑡
,

𝝉𝑘𝑣,ℎ = 𝜕𝒗𝑘
𝜕 𝑡 − 𝒗𝑘+1 − 𝒗𝑘

𝛥𝑡
.

(35)

4.1. Key estimates

This section estimates the error terms in (33) and (34). In this direction, note that, if 𝒖, 𝒗 ∈ 𝐶2([0, 𝑡𝐹 ];𝐻2(𝐷)), then

‖𝝉𝑘𝑢,ℎ‖ + ‖𝝉𝑘𝑣,ℎ‖ ≤ 𝐶𝑡𝛥𝑡, 𝐶𝑡 = sup
𝑡
‖𝜕2𝑡𝑡𝒖(𝑡)‖ + sup

𝑡
‖𝜕3𝑡𝑡𝑡𝒖(𝑡)‖. (36)

Further, if 𝒃 ∈ 𝐶([0, 𝑡𝐹 ];𝐻2(𝐷)) then noting that 𝒃𝑘ℎ is a linear interpolation of 𝒃(𝑡𝑘) it can be easily shown using (17) that

‖𝒃𝑘 − 𝒃(𝑡𝑘)‖ ≤ 𝑐 ℎ2 sup ‖𝒃(𝑡)‖ . (37)
ℎ 3
𝑡

2
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Focusing on the remaining consistency error term in (34), 𝑭 𝑟𝑛𝑝(𝒖𝑘) − 𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘ℎ), using the triangle inequality, the error can be
hown to be bounded by the sum of the four terms as follows:

‖𝑭 𝑟𝑛𝑝(𝒖𝑘) − 𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘ℎ)‖

≤ ‖𝑭 𝑟𝑛𝑝(𝒖𝑘) − 𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘)‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐼1

+ ‖𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘) − 𝑭 𝑟𝑛𝑝,ℎ(ℎ(𝒖𝑘))‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐼2

+ ‖𝑭 𝑟𝑛𝑝,ℎ(ℎ(𝒖𝑘)) − 𝑭 𝑟𝑛𝑝,ℎ(𝒓ℎ(𝒖𝑘))‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐼3

+ ‖𝑭 𝑟𝑛𝑝,ℎ(𝒓ℎ(𝒖𝑘)) − 𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘ℎ)‖
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶𝐼4

.

(38)

To bound the above terms, the following property of nonlinear peridynamics force 𝑭 𝑟𝑛𝑝 is crucial.

Remark 4.1. Assuming that the domain 𝐷 is a 𝐶1 domain, the boundary function 𝜔 ∈ 𝐶2(𝐷), and the peridynamics potential 𝜓
see (8) or (9)) is smooth with up to 4th order bounded derivatives, from [44, Section 3], it holds that

‖𝑭 𝑟𝑛𝑝(𝒖)‖2 ≤
𝐿2‖𝒖‖2 + 𝐿3‖𝒖‖22

𝜖5∕2
, ∀𝒖 ∈ 𝐻2(𝐷). (39)

Further, the peridynamics force satisfies the following Lipschitz continuity condition in the 𝐿2 norm

‖𝑭 𝑟𝑛𝑝(𝒖) − 𝑭 𝑟𝑛𝑝(𝒗)‖ ≤
𝐿1

𝜖2
‖𝒖 − 𝒗‖ ∀𝒖, 𝒗 ∈ 𝐿2(𝐷). (40)

Here, constants 𝐿1, 𝐿2, 𝐿3 are independent of 𝒖, 𝒗 and depend on the influence function 𝐽 and peridynamics force potential 𝜓 . For
uture reference, 𝐿1, from [44, Section 3], is given by

𝐿1 ∶= 4
(

1
w𝑑 ∫𝐻1(𝟎)

𝐽 (|𝝃|)
|𝝃|

𝑑𝝃
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐽1

(

sup
𝑟

|

|

|

|

𝑑2

𝑑 𝑟2 𝜓(𝑟
2)
|

|

|

|

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝐶2

= 4𝐽1𝐶2. (41)

The lemma below collects the bounds on the errors 𝐼𝑛, 𝑛 = 1, 2, 3, 4.

Lemma 4.2 (Consistency of the Peridynamics Force).
For 𝒖𝑘 in 𝐻2(𝐷) ∩ 𝐶2(𝐷), the following estimates hold

𝐼1 ≤

[

𝑐3
𝐿2‖𝒖𝑘‖2 + 𝐿3‖𝒖𝑘‖22

𝜖5∕2

]

ℎ2, 𝐼2 ≤

⎡

⎢

⎢

⎢

⎢

⎣

𝐿1𝑐4

√

𝑐2|𝐷|

𝑐1

𝜖2
sup
𝒙∈𝐷

|

|

|

∇2𝒖𝑘(𝒙)||
|

⎤

⎥

⎥

⎥

⎥

⎦

ℎ2,

𝐼3 ≤
⎡

⎢

⎢

⎢

⎣

2𝑐3𝐿1𝑛̄
√

𝑐2
𝑐1

𝜖2
‖𝒖𝑘‖2

⎤

⎥

⎥

⎥

⎦

ℎ2, 𝐼4 ≤
⎡

⎢

⎢

⎢

⎣

𝐿1𝑛̄
√

𝑐2
𝑐1

𝜖2

⎤

⎥

⎥

⎥

⎦

‖𝒆𝑘𝑢,ℎ‖.

(42)

Here, 𝑐𝑖, 𝑖 = 1, 2, 3, 4, are constants depending only on the triangulation ℎ, see (17), (18), (14). Moreover, 𝐿𝑖, 𝑖 = 1, 2, 3, are constants
that only depend on the influence function 𝐽 and the peridynamics force potential function 𝜓 . Finally, the constant 𝑛̄ is given by

𝑛̄ = max
𝑇∈ℎ

{number of vertices of element 𝑇 }. (43)

Proof. Let us consider 𝐼1 first. Since 𝒖𝑘 ∈ 𝐻2(𝐷) ∩𝐶2(𝐷), note that 𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘) = ℎ(𝑭 𝑟𝑛𝑝(𝒖𝑘)), where ℎ is the continuous piecewise
linear interpolant. Using (17) and (39), it can be shown that

𝐼1 = ‖𝑭 𝑟𝑛𝑝(𝒖𝑘) − ℎ(𝑭 𝑟𝑛𝑝(𝒖𝑘))‖ ≤ 𝑐3ℎ
2
‖𝑭 𝑟𝑛𝑝(𝒖𝑘)‖2

≤

[

𝑐3
𝐿2‖𝒖𝑘‖2 + 𝐿3‖𝒖𝑘‖22

𝜖5∕2

]

ℎ2.

Next, 𝐼3 and 𝐼4 are bounded from above. Let 𝒘1,𝒘2 ∈ 𝑉ℎ, then both 𝐼3 and 𝐼4 are of the form ‖𝑭 𝑟𝑛𝑝,ℎ(𝒘1) − 𝑭 𝑟𝑛𝑝,ℎ(𝒘2)‖. Now,
sing the definition of 𝑭 𝑟𝑛𝑝 in (10), it follows that

𝑭 𝑟𝑛𝑝(𝒘1)(𝒙𝑖) − 𝑭 𝑟𝑛𝑝(𝒘2)(𝒙𝑖)

= 4
w𝑑𝜖𝑑+1 ∫𝐻𝜖 (𝒙)∩𝐷

𝜔(𝒙𝑖)𝜔(𝒚)𝐽 𝜖(|𝒚 − 𝒙𝑖|)

[𝜓 ′(|𝒚 − 𝒙𝑖|𝑆(𝒚,𝒙𝑖;𝒘1)2)𝑆(𝒚,𝒙𝑖;𝒘1) − 𝜓 ′(|𝒚 − 𝒙𝑖|𝑆(𝒚,𝒙𝑖;𝒘2)2)𝑆(𝒚,𝒙𝑖;𝒘2)]
𝒚 − 𝒙𝑖
|𝒚 − 𝒙𝑖|

𝑑𝒚.

(44)
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Let 𝛹 (𝑟) ∶= 𝜓(𝑟2) then 𝛹 ′(𝑟) = 2𝑟𝜓 ′(𝑟2) and |𝛹 ′(𝑟1) − 𝛹 ′(𝑟2)| ≤ sup𝑟 |𝛹 ′′(𝑟)||𝑟1 − 𝑟2|. Since 𝜓 is smooth and has up to 4 bounded
derivatives, sup𝑟 |𝛹 ′′(𝑟)| = sup𝑟 |𝜓(𝑟2)| = 𝐶2 <∞. Using the constant 𝐶2, it holds that

2|𝜓 ′(|𝒚 − 𝒙𝑖|𝑆(𝒚,𝒙𝑖;𝒘1)2)𝑆(𝒚,𝒙𝑖;𝒘1) − 𝜓 ′(|𝒚 − 𝒙𝑖|𝑆(𝒚,𝒙𝑖;𝒘2)2)𝑆(𝒚,𝒙𝑖;𝒘2)|

≤ 𝐶2
√

|𝒚 − 𝒙𝑖| |𝑆(𝒚,𝒙𝑖;𝒘1) − 𝑆(𝒚,𝒙𝑖;𝒘2)|

= 𝐶2
√

|𝒚 − 𝒙𝑖|
|

|

|

|

𝒘1(𝒚) −𝒘1(𝒙𝑖)
|𝒚 − 𝒙𝑖|

⋅
𝒚 − 𝒙𝑖
|𝒚 − 𝒙𝑖|

−
𝒘2(𝒚) −𝒘2(𝒙𝑖)

|𝒚 − 𝒙𝑖|
⋅
𝒚 − 𝒙𝑖
|𝒚 − 𝒙𝑖|

|

|

|

|

≤ 𝐶2
|𝒘1(𝒚) −𝒘2(𝒚)| + |𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|

√

|𝒚 − 𝒙𝑖|
.

Using the above bound and change in variable 𝝃 = (𝒚 − 𝒙𝑖)∕𝜖 ∈ 𝐻1(𝟎), from (44), one can show that
|𝑭 𝑟𝑛𝑝(𝒘1)(𝒙𝑖) − 𝑭 𝑟𝑛𝑝(𝒘2)(𝒙𝑖)|

≤
2𝐶2

𝜖2w𝑑 ∫𝐻1(𝟎)

𝐽 (|𝝃|)
√

|𝝃|
(|𝒘1(𝒙𝑖 + 𝜖𝝃) −𝒘2(𝒙𝑖 + 𝜖𝝃)| + |𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|)𝑑𝝃

(45)

and
|𝑭 𝑟𝑛𝑝(𝒘1)(𝒙𝑖) − 𝑭 𝑟𝑛𝑝(𝒘2)(𝒙𝑖)|2

≤ 2
(

2𝐶2

𝜖2w𝑑

)2 𝐽1
w𝑑 ∫𝐻1(𝟎)

𝐽 (|𝝃|)
|𝝃|

(|𝒘1(𝒙𝑖 + 𝜖𝝃) −𝒘2(𝒙𝑖 + 𝜖𝝃)|2 + |𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|2)𝑑𝝃,
(46)

where, 𝐽1 ∶=
1
w𝑑

∫𝐻1(𝟎)
𝐽 (|𝝃|)∕|𝝃|𝑑𝝃.

Next, using the property of the finite element function space 𝑉ℎ that relates 𝐿2 norm to discrete 𝑙2 norm in (14), it can be shown
that

‖𝑭 𝑟𝑛𝑝,ℎ(𝒘1) − 𝑭 𝑟𝑛𝑝,ℎ(𝒘2)‖2

≤ 𝑐2
𝑁
∑

𝑖=1
|𝑭 𝑟𝑛𝑝(𝒘1)(𝒙𝑖) − 𝑭 𝑟𝑛𝑝(𝒘2)(𝒙𝑖)|2

≤ 𝑐22
(

2𝐶2

𝜖2w𝑑

)2 𝐽1
w𝑑 ∫𝐻1(𝟎)

𝐽 (|𝝃|)
|𝝃|

[ 𝑁
∑

𝑖=1
(|𝒘1(𝒙𝑖 + 𝜖𝝃) −𝒘2(𝒙𝑖 + 𝜖𝝃)|2 + |𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|2)

]

𝑑𝝃.

(47)

Since 𝒘1,𝒘2 ∈ 𝑉ℎ, using (14), it holds that
𝑁
∑

𝑖=1
|𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|2 ≤

1
𝑐1

‖𝒘1 −𝒘2‖
2. (48)

Now, to estimate
𝑁
∑

𝑖=1
|𝒘1(𝒙𝑖 + 𝜖𝝃) −𝒘2(𝒙𝑖 + 𝜖𝝃)|2,

consider any point 𝒚 ∈ 𝑇 , where 𝑇 ∈ ℎ. Denoting the set of vertices of an element 𝑇 as 𝑁𝑇 , it follows that
|𝒘1(𝒚) −𝒘2(𝒚)|2 = |

∑

𝑖∈𝑁𝑇

(𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖))𝜙𝑖(𝒚)|
2

≤ |𝑁𝑇 |
∑

𝑖∈𝑁𝑇

|𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|2|𝜙𝑖(𝒚)|2 ≤ |𝑁𝑇 |
∑

𝑖∈𝑁𝑇

|𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|2,

where, in the above, the property of the interpolation function 𝜙𝑖 ≤ 1 is used, and |𝑁𝑇 | gives the size of set 𝑁𝑇 . Let 𝑛̄ = max𝑇∈ℎ |𝑁𝑇 |,
and define the map which returns the element 𝑇 that contains the point 𝒚 by 𝛱(𝒚), i.e., 𝛱(𝒚) = 𝑇 such that 𝒚 ∈ 𝑇̄ , 𝑇̄ = 𝑇 ∪ 𝜕 𝑇 is
the closure of the set 𝑇 . It is assumed that 𝛱 returns a unique element for all 𝒚. Note that for 𝒚 on the boundary of an element 𝑇 ,
𝒚 could belong to more than one element. In such cases, 𝛱 is assumed to pick one element out of multiple elements randomly or
through some selection scheme. It is easy to see now that

𝑁
∑

𝑖=1
|𝒘1(𝒙𝑖 + 𝜖𝝃) −𝒘2(𝒙𝑖 + 𝜖𝝃)|2 ≤

𝑁
∑

𝑖=1

⎡

⎢

⎢

⎣

𝑛̄
∑

𝑗∈𝑁𝛱(𝒙𝑖+𝜖𝝃)

|𝒘1(𝒙𝑗 ) −𝒘2(𝒙𝑗 )|2
⎤

⎥

⎥

⎦

.

In above double summation, each |𝒘1(𝒙𝑙) −𝒘2(𝒙𝑙)|2 for 𝑙 = 1,… , 𝑁 will be counted at max 𝑛̄ times, so
𝑁
∑

𝑖=1
|𝒘1(𝒙𝑖 + 𝜖𝝃) −𝒘2(𝒙𝑖 + 𝜖𝝃)|2 ≤

𝑁
∑

𝑖=1

⎡

⎢

⎢

⎣

𝑛̄
∑

𝑗∈𝑁𝛱(𝒙𝑖+𝜖𝝃)

|𝒘1(𝒙𝑗 ) −𝒘2(𝒙𝑗 )|2
⎤

⎥

⎥

⎦

≤ 𝑛̄2
𝑁
∑

|𝒘1(𝒙𝑖) −𝒘2(𝒙𝑖)|2.

𝑖=1

8 
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Combining the above inequality with (48), the following holds, for any 𝝃 ∈ 𝐻1(𝟎),
𝑁
∑

𝑖=1
|𝒘1(𝒙𝑖 + 𝜖𝝃) −𝒘2(𝒙𝑖 + 𝜖𝝃)|2 ≤

𝑛̄2

𝑐1
‖𝒘1 −𝒘2‖

2. (49)

By combining (48) and (49) with (47), it can be shown that
‖𝑭 𝑟𝑛𝑝,ℎ(𝒘1) − 𝑭 𝑟𝑛𝑝,ℎ(𝒘2)‖2

≤ 2𝑐2

(

2𝐶2

𝜖2w𝑑

)2 𝐽1
w𝑑 ∫𝐻1(𝟎)

𝐽 (|𝝃|)
|𝝃|

[

1 + 𝑛̄2
𝑐1

‖𝒘1 −𝒘2‖
2
]

𝑑𝝃

=
(1 + 𝑛̄2)(𝑐2∕𝑐1)8𝐶2

2𝐽
2
1

𝜖4
‖𝒘1 −𝒘2‖

2

≤

[

𝑛̄
√

𝑐2∕𝑐1 𝐿1

𝜖2
‖𝒘1 −𝒘2‖

]2

,

where, 𝐿1 = 4𝐶2𝐽1 (see (41)). Using the above bound that holds for any 𝒘1,𝒘2 ∈ 𝑉ℎ, one readily obtains

𝐼3 = ‖𝑭 𝑟𝑛𝑝,ℎ(ℎ(𝒖𝑘)) − 𝑭 𝑟𝑛𝑝,ℎ(𝒓ℎ(𝒖𝑘))‖ ≤
𝑛̄
√

𝑐2∕𝑐1 𝐿1

𝜖2
‖ℎ(𝒖𝑘) − 𝒓ℎ(𝒖𝑘)‖

≤
𝑛̄
√

𝑐2∕𝑐1 𝐿1

𝜖2
[

‖ℎ(𝒖𝑘) − 𝒖𝑘‖ + ‖𝒖𝑘 − 𝒓ℎ(𝒖𝑘)‖
]

≤
𝑛̄
√

𝑐2∕𝑐1 𝐿1

𝜖2
2𝑐3ℎ2‖𝒖𝑘‖2,

(50)

where, (17) and (21) are utilized in the last step. Similarly, 𝐼4 can be bounded from the above as follows

𝐼4 = ‖𝑭 𝑟𝑛𝑝,ℎ(𝒓ℎ(𝒖𝑘)) − 𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘ℎ)‖ ≤
𝑛̄
√

𝑐2∕𝑐1 𝐿1

𝜖2
‖𝒓ℎ(𝒖𝑘) − 𝒖𝑘ℎ‖ =

𝑛̄
√

𝑐2∕𝑐1 𝐿1

𝜖2
‖𝒆𝑘𝑢,ℎ‖, (51)

where, the definition of the error 𝒆𝑘𝑢,ℎ is used in the last step.
Next, 𝐼2 is bounded from the above. Bounds established so far only used the fact that 𝒖𝑘 ∈ 𝐻2(𝐷). However, to bound 𝐼2,

dditional regularity of 𝒖𝑘, 𝒖𝑘 ∈ 𝐻2(𝐷) ∩ 𝐶2(𝐷), will be utilized.

𝐼22 =‖𝑭 𝑟𝑛𝑝,ℎ(𝒖𝑘) − 𝑭 𝑟𝑛𝑝,ℎ(ℎ(𝒖𝑘))‖2 ≤ 2𝑐2

(

2𝐶2

𝜖2w𝑑

)2 𝐽1
w𝑑

∫𝐻1(𝟎)

𝐽 (|𝝃|)
|𝝃|

[ 𝑁
∑

𝑖=1
(|𝒖𝑘(𝒙𝑖 + 𝜖𝝃) − ℎ(𝒖𝑘)(𝒙𝑖 + 𝜖𝝃)|

2 + |𝒖𝑘(𝒙𝑖) − ℎ(𝒖𝑘)(𝒙𝑖)|
2)

]

𝑑𝝃.
(52)

Using the pointwise bound on the interpolant error, see (18), for 𝒖𝑘 ∈ 𝐶2(𝐷), it follows

𝐼22 ≤ 𝑐22
(

2𝐶2

𝜖2w𝑑

)2 𝐽1
w𝑑 ∫𝐻1(𝟎)

𝐽 (|𝝃|)
|𝝃|

[

𝑁 𝑐24ℎ4
(

sup
𝒙∈𝐷

|

|

|

∇2𝒖𝑘(𝒙)||
|

)2
]

𝑑𝝃, (53)

where recall that 𝑁 is the number of mesh nodes. Consider 𝒗̄ℎ = (𝑣̄1,ℎ, 𝑣̄2,ℎ,… , 𝑣̄𝑑 ,ℎ) ∈ 𝑉ℎ, 𝑑 = 2, 3 being the spatial dimension, such
that 𝑣̄𝑛,ℎ = 0 for 𝑛 ≥ 2 and 𝑣̄1,ℎ = 1. Then, from (14), it holds that

𝑐1𝑁 ≤ ‖𝒗̄ℎ‖2 = |𝐷| ⇒ 𝑁 ≤ |𝐷|

𝑐1
. (54)

Using above in (53), it follows that

𝐼22 ≤ 2𝑐2
𝑐24ℎ

4
|𝐷|

𝑐1

(

sup
𝒚∈𝐷

|∇2𝒖𝑘(𝒚)|

)2
(

2𝐶2

𝜖2w𝑑

)2 𝐽1
w𝑑 ∫𝐻1(𝟎)

𝐽 (|𝝃|)
|𝝃|

𝑑𝝃

≤

[

2ℎ2𝑐4
√

𝑐2|𝐷|∕𝑐1 2𝐶2𝐽1
𝜖2

sup
𝒙∈𝐷

|

|

|

∇2𝒖𝑘(𝒙)||
|

]2

≤

[

ℎ2𝐿1𝑐4
√

𝑐2|𝐷|∕𝑐1
𝜖2

sup
𝒙∈𝐷

|

|

|

∇2𝒖𝑘(𝒙)||
|

]2

,

(55)

where the definition of 𝐿1 is used in the last step. This completes the proof of lemma. □

4.2. A-priori convergence

Let the discretization error 𝐸𝑘 at the 𝑘th step be given by

𝐸𝑘 = ‖𝒖𝑘ℎ − 𝒖(𝑡𝑘)‖ + ‖𝒗𝑘ℎ − 𝒗(𝑡𝑘)‖. (56)
9 



P.K. Jha et al.



Computer Methods in Applied Mechanics and Engineering 434 (2025) 117519 
Then, the application of triangle inequality and (21) gives

𝐸𝑘 ≤ ‖𝒖𝑘ℎ − 𝒓ℎ(𝒖(𝑡𝑘))‖ + ‖𝒗𝑘ℎ − 𝒓ℎ(𝒗(𝑡𝑘))‖ + ‖𝒓ℎ(𝒖𝑘) − 𝒖(𝑡𝑘)‖ + ‖𝒓ℎ(𝒗𝑘) − 𝒗(𝑡𝑘)‖

= ‖𝒆𝑘𝑢,ℎ‖ + ‖𝒆𝑘𝑣,ℎ‖ + 𝐶𝑝ℎ
2,

(57)

where

𝐶𝑝 = 𝑐3

[

sup
𝑡
‖𝒖(𝑡)‖2 + sup

𝑡
‖𝜕𝑡𝒖(𝑡)‖2

]

. (58)

The main result is as follows.

Theorem 4.3 (A-Priori Convergence Of NFEA). If the solution (𝒖, 𝒗 = 𝜕𝑡𝒖) of the peridynamics equation (11) is such that 𝒖, 𝒗 ∈
𝐶2([0, 𝑡𝐹 ];𝐻2(𝐷) ∩𝐻1

0 (𝐷) ∩ 𝐶2(𝐷)) then the scheme is consistent and the total error 𝐸𝑘 satisfies the following bound
sup

𝑘≤𝑡𝐹 ∕𝛥𝑡
𝐸𝑘

≤ 𝐶𝑝ℎ
2 + exp[𝑡𝐹

(1 + 𝐿1𝑛̄
√

𝑐2∕𝑐1∕𝜖2)
1 − 𝛥𝑡 ]

[

‖𝒆0𝑢,ℎ‖ + ‖𝒆0𝑣,ℎ‖ +
(

𝑡𝐹
1 − 𝛥𝑡

) (
𝐶𝑡𝛥𝑡 + 𝐶𝑠

ℎ2

𝜖2

)]

,
(59)

where, constants 𝐶𝑝 and 𝐶𝑡 are defined in (36) and (58), respectively, and the constant 𝐶𝑠 is given by

𝐶𝑠 =
[

𝑐3
𝜖5∕2

(

𝐿2 sup
𝑡
‖𝒖(𝑡)‖2 + 𝐿3(sup

𝑡
‖𝒖(𝑡)‖2)2

)]

+

⎡

⎢

⎢

⎢

⎢

⎣

𝐿1𝑐4

√

𝑐2|𝐷|

𝑐1

𝜖2
sup
𝑡

sup
𝒙∈𝐷

|

|

|

∇2𝒖(𝒙, 𝑡)||
|

⎤

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎣

2𝑐3𝐿1𝑛̄
√

𝑐2
𝑐1

𝜖2
sup
𝑡
‖𝒖(𝑡)‖2

⎤

⎥

⎥

⎥

⎦

.
(60)

The proof is similar to the proof of Theorem 5.1 in [44] and relies on the estimates shown in Section 4.1.

5. An alternate nodal formulation based on the Clément interpolation

An improved a priori convergence result is observed when the Clément interpolant (see Section 3) is used in a nodal finite
element formulation. More specifically, the Clément interpolation is used for the peridynamic force.

Let 𝑭 𝐶
ℎ (𝒖

𝑘
ℎ) be the Clément interpolation of 𝑭 (𝒖𝑘ℎ), i.e.,

𝑭 𝐶
ℎ (𝒖

𝑘
ℎ)(𝒙)

|

|

|

|𝑇
=

∑

𝑖∈𝑁𝑇

𝑖(𝑭 (𝒖𝑘ℎ))(𝒙𝑖)𝜙𝑖(𝒙), 𝒙 ∈ 𝑇 , ∀𝑇 ∈ ℎ, (61)

where, recall from Section 3 that 𝑃𝑖 ∶ 𝐿2(𝑆𝑖)2 → 1(𝑆𝑖) is the 𝐿2 projection, 𝑆𝑖 being the list of elements with 𝑖 as the vertex and
1(𝑆𝑖) the space of continuous piecewise linear finite elements on 𝑆𝑖. Then, (28) is written as

𝜌
𝒖𝑘+1ℎ − 2𝒖𝑘ℎ + 𝒖𝑘−1ℎ

𝛥𝑡2
= 𝑭 𝐶

ℎ (𝒖
𝑘
ℎ) + 𝒃𝑘ℎ. (62)

Previous analysis can be used to obtain the a-priori error estimates except for the peridynamics force. For the control of the error
in peridynamics force, using the splitting of the error in (38), next results similar to Lemma 4.2 are obtained bounding terms 𝐼𝑘,
𝑘 = 1, 2, 3, 4.

First, an upper bound on 𝐼2 is obtained. From (17), (40), (24), it follows that

𝐼2 =‖𝑭 𝐶
ℎ (𝒖

𝑘) − 𝑭 𝐶
ℎ (ℎ(𝒖

𝑘))‖ = ‖𝐶ℎ [𝑭 (𝒖𝑘) − 𝑭 (ℎ(𝒖𝑘))]‖

≤𝐶‖𝑭 (𝒖𝑘) − 𝑭 (ℎ(𝒖𝑘))‖ ≤
𝐶 𝐿1

𝜖2
‖𝒖𝑘 − ℎ(𝒖𝑘)‖

≤
𝑐3𝐶 𝐿1ℎ2

𝜖2
‖𝒖𝑘‖2.

(63)

To bound 𝐼3, combining (17), (40), (24) to get

𝐼3 =‖𝑭 𝐶
ℎ (ℎ(𝒖

𝑘)) − 𝑭 𝐶
ℎ (𝑟ℎ(𝒖

𝑘))‖ = ‖𝐶ℎ [𝑭 (ℎ(𝒖𝑘)) − 𝑭 (𝑟ℎ(𝒖𝑘))]‖

≤𝐶‖𝑭 (ℎ(𝒖𝑘)) − 𝑭 (𝑟ℎ(𝒖𝑘))‖ ≤
𝐶 𝐿1

𝜖2
‖ℎ(𝒖𝑘) − 𝑟ℎ(𝒖𝑘)‖

≤
𝐶 𝐿1

𝜖2
{‖ℎ(𝒖𝑘) − 𝒖𝑘‖ + ‖𝒖𝑘 − 𝑟ℎ(𝒖𝑘)‖} ≤ 2

𝑐3𝐶 𝐿1ℎ2

𝜖2
‖𝒖𝑘‖2.

(64)

Applying 𝐿2 stability of the Clément interpolant and arguing as in (51) deliver

𝐼4 =‖𝑭 𝐶
ℎ (𝑟ℎ(𝒖

𝑘)) − 𝑭 𝐶
ℎ (𝒖

𝑘
ℎ)‖ ≤

𝑛̄
√

𝑐2∕𝑐1 𝐿1

𝜖2
‖𝒆𝑘𝑢,ℎ‖. (65)
10 
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Lastly, term 𝐼1 is bounded by applying (24) with 𝑡 = 0 and 𝑠 = 2 and (39) as follows

𝐼1 =‖𝑭 (𝒖𝑘) − 𝑭 𝐶
ℎ (𝒖

𝑘)‖ ≤ 𝐶 ℎ2‖𝑭 (𝒖𝑘)‖2 ≤

[

𝑐3𝐶
𝐿2‖𝒖𝑘‖2 + 𝐿3‖𝒖𝑘‖22

𝜖5∕2

]

ℎ2 . (66)

Collecting the estimates (63), (64), (65), and (66) and arguing again as in the proof of Theorem 5.1 in [44] gives

Theorem 5.1 (A-Priori Convergence of NFEA with Clément Interpolation of Peridynamics Force). If the solution (𝒖, 𝒗 = 𝜕𝑡𝒖) of the
eridynamics equation (11) is such that 𝒖, 𝒗 ∈ 𝐶2([0, 𝑡𝐹 ];𝐻2(𝐷) ∩𝐻1

0 (𝐷)) then the scheme is consistent and the total error 𝐸𝑘 satisfies the
ollowing bound

sup
𝑘≤𝑡𝐹 ∕𝛥𝑡

𝐸𝑘

≤ 𝐶𝑝ℎ
2 + exp[𝑡𝐹

(1 + 𝐿1𝑛̄
√

𝑐2∕𝑐1∕𝜖2)
1 − 𝛥𝑡 ]

[

‖𝒆0𝑢,ℎ‖ + ‖𝒆0𝑣,ℎ‖ +
(

𝑡𝐹
1 − 𝛥𝑡

) (
𝐶𝑡𝛥𝑡 + 𝐶𝑠

ℎ2

𝜖2

)]

,
(67)

where, constants 𝐶𝑝 and 𝐶𝑡 are defined in (36) and (58), respectively, and the constant 𝐶𝑠 is given by
𝐶𝑠 =

[

𝑐3
𝜖5∕2

(

𝐿2 sup
𝑡
‖𝒖(𝑡)‖2 + 𝐿3(sup

𝑡
‖𝒖(𝑡)‖2)2

)]

+
[

3𝑐3𝐶 𝐿1

𝜖2
sup
𝑡
‖𝒖(𝑡)‖2

]

.
(68)

This section is concluded with the following key remark.

Remark 5.2. The a-priori convergence rate for the alternate NFEA is an improvement over the rate given in Section Theorem 4.3
as the constant 𝐶𝑠 depends only on sup𝑡 ‖𝒖(𝑡)‖2. However, it is more expensive to implement. Future work will investigate the
efficiency of the alternate NFEA scheme. Additionally, the Clément interpolation will be used to design a-posteriori estimates for
use in adaptive schemes for mesh refinement.

6. Asymptotic compatibility of Clément NFEA

In this section, the numerical error in initial values is assumed to be zero. The asymptotic compatibility is established using the
𝐶([0, 𝑇 ], 𝐿2(𝐷)) compactness of sequences of solutions to the RNP model associated with vanishing horizon together with the fact
that the limit displacement 𝒖0 lies inside a dense subspace of 𝐶([0, 𝑇 ], 𝐿2(𝐷)).

To begin, write the peridynamic solution for the RNP model given in Section 2 associated with horizon size 𝜖 as 𝒖𝜖(𝑡). Motivated
y simulations, see Fig. 11 where the 𝐿∞ norms of displacement are bounded for three different horizons, peridynamics solution is

assumed to satisfy sup𝜖 >0 ‖𝒖𝜖‖∞ < ∞ for all 𝜖. With this hypothesis, multiplying Eq. (11) by 𝒖̇𝜖 , integrating by parts, and applying
Grönwall’s inequality to find as in [21] that there is a sub-sequence denoted by 𝒖𝜖𝑛 converging strongly to a limit function 𝒖0 in
𝐶([0, 𝑡𝐹 ];𝐿2(𝐷)), i.e.,

lim
𝑛→∞

max
𝑡∈[0,𝑡𝐹 ]

‖𝒖𝜖𝑛 (𝑡) − 𝒖0(𝑡)‖𝐿2(𝐷) = 0, (69)

where, 𝒖0 belongs to SBD for every 𝑡 ∈ [0, 𝑡𝐹 ]. Furthermore, there exists a constant 𝐶 depending only on 𝑡𝐹 bounding the Griffith
(LEFM) energy,

∫𝐷
𝜇|𝒖0(𝑡)|2 + 𝜆

2
|div 𝒖0(𝑡)|2 𝑑 𝑥 + 𝑐𝑑−1(𝐽𝒖0(𝑡)) ≤ 𝐶 , 𝑑 = 2, 3, (70)

for 0 ≤ 𝑡 ≤ 𝑡𝐹 , where, 𝐽𝑢0(𝑡) denotes the evolving fracture surface and 𝑑−1(𝐽𝒖0(𝑡)) is its 𝑑 − 1 dimensional Hausdorff measure at time
𝑡. Here the shear moduli 𝜇, and Láme moduli 𝜆 are given by explicit formulas expressed in terms of 𝜓 ′ (derivative of the function
𝜓 in the RNP force model), see [21]. An analogous observation for Hölder continuous solutions is made in [29].

Defining as before the discrete times 𝑡𝑘𝑛 = 𝑘𝛥𝑡𝑛, 𝑘 = 1,… , 𝑁 , where 𝑁 = 𝑡𝐹 ∕𝛥𝑡𝑛, let the approximation of 𝒖𝜖(𝑡𝑘𝑛 ) based on the
Clément NFEA is denoted by (𝐮𝜖)𝑘𝑛ℎ𝑛 . Using the piecewise constant interpolation, the discrete solutions in times are extended to be
defined at all times as follows:

(𝐮𝜖)𝑘𝑛ℎ𝑛 (𝑡) ∶= (𝐮𝜖)𝑘𝑛ℎ𝑛 for 𝑡 in the interval ((𝑘 − 1)𝛥𝑡𝑛, 𝑘𝛥𝑡𝑛) . (71)

Theorem 6.1 (Asymptotic Compatibility of NFEA with Clément Interpolation of Peridynamics Force). Let (𝐮𝜖𝑛 )𝑘𝑛ℎ𝑛 be the Clément Nodal
finite element approximation at time 𝑡𝑘𝑛 to 𝐮𝜖𝑛 , then there are sequences 𝛥𝑡𝑛 ℎ𝑛, 𝜖𝑛, with 𝛥𝑡𝑛 → 0, ℎ𝑛 → 0 and 𝜖𝑛 → 0 for 𝑛 = 1, 2,… such
hat

lim
𝑛→∞

max
𝑡∈[0,𝑡𝑓 ]

‖(𝐮𝜖𝑛 )𝑘𝑛ℎ𝑛 (𝑡) − 𝐮0(𝑡)‖𝐿2(𝐷) = 0 .

Remark 6.2. It is noted that the method is not uniformly convergent with horizon 𝜖𝑛 as the constants multiplying the ratio ℎ2𝑛
𝜖2𝑛

go
o ∞ as 𝜖𝑛 → 0.
11 
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Fig. 3. Typical mesh node 𝒙𝑖 and one of the neighboring nodes 𝒙𝑗 in an example 2-d finite element mesh. All the red nodes contribute to the force at 𝒙𝑖. The
set 𝐸𝑗 = {𝑒𝑗𝑘}5𝑘=1 of elements with the node 𝒙𝑗 as the vertex is shown in gray.

To establish Theorem 6.1, define

𝐮̃𝜖𝑛 ,𝑘𝑛 (𝑡) ∶= 𝐮𝜖𝑛 (𝑡𝑘𝑛 ) for 𝑡 in the interval ((𝑘 − 1)𝛥𝑡𝑛, 𝑘𝛥𝑡𝑛), (72)

and apply the triangle inequality

max
𝑡∈[0,𝑡𝑓 ]

‖(𝐮𝜖𝑛 )𝑘𝑛ℎ𝑛 (𝑡) − 𝐮0(𝑡)‖𝐿2(𝐷) ≤ max
𝑡∈[0,𝑡𝑓 ]

‖(𝐮𝜖𝑛 )𝑘𝑛ℎ𝑛 (𝑡) − 𝐮̃𝜖𝑛 ,𝑘𝑛 (𝑡)‖𝐿2(𝐷) + max
𝑡∈[0,𝑡𝑓 ]

‖𝐮̃𝜖𝑛 ,𝑘𝑛 (𝑡) − 𝒖𝜖𝑛 (𝑡)‖𝐿2(𝐷)

+ max
𝑡∈[0,𝑡𝑓 ]

‖𝒖𝜖𝑛 (𝑡) − 𝒖0(𝑡)‖𝐿2(𝐷) ∶= 𝐴1 + 𝐴2 + 𝐴3 . (73)

From Theorem 5.1

𝐴1 ≤ max
𝑡𝑘𝑛

‖(𝐮𝜖)𝑘𝑛ℎ𝑛 − 𝒖𝜖𝑛 (𝑡𝑘𝑛 )‖𝐿2(𝐷) ≤
𝐶𝜖𝑛
𝜖2𝑛

(𝐶𝑡𝛥𝑡𝑛 + 𝐶𝑠ℎ2𝑛) , (74)

where, 𝐶𝜖𝑛 → ∞ as 𝜖𝑛 → 0. Set 𝑂𝑘𝑛 = ((𝑘 − 1)𝛥𝑡𝑛, 𝑘𝛥𝑡𝑛), and from Theorem 2.3 of [21] one has

𝐴2 ≤ max
𝑘𝑛

max
𝑡∈𝑂𝑘𝑛

‖𝒖𝜖𝑛 (𝑡𝑘𝑛 ) − 𝒖𝜖𝑛 (𝑡)‖𝐿2(𝐷) ≤ 𝐶 𝛥𝑡𝑛 , (75)

where, the constant 𝐶 is independent of 𝜖𝑛, 𝒖𝜖𝑛 and 𝛥𝑡𝑛. From the strong convergence Eq. (69), it is clear 𝐴3 converges to 0 for
𝜖𝑛 → 0. Thus, given a tolerance 𝜏 > 0, 𝜖𝑛 can be selected to be sufficiently small so that 𝐴3 < 𝜏∕3. From-Eq. (75), the size of time
steps 𝛥𝑡𝑛 can be chosen sufficiently small so that 𝐴2 ≤ 𝜏∕3. Lastly, given 𝜖𝑛 from Eq. (74), mesh size ℎ𝑛 and 𝛥𝑡𝑛 can be selected
sufficiently small to have 𝐴1 ≤ 𝜏∕3, and combining 𝐴1 + 𝐴2 + 𝐴3 < 𝜏 proving the theorem.

7. Numerical results

This section presents results involving fracture evolution under different loading conditions and geometries. First, the procedure
to numerically compute the peridynamics force is detailed, and the implementation of the NFEA method is briefly presented. In
the implementation, integration over a horizon in the nodal peridynamics force is approximated by discrete summation involving
node–node interaction; this is similar to the commonly used meshfree method and allows the NFEA method to be computationally
efficient. Next, the material properties for numerical examples and calibration of the parameters in the peridynamics constitutive
law are detailed. The remaining subsections are devoted to the numerical results. The first example concerns a simple non-fracture
problem involving a square domain subjected to displacement-controlled loading, and the mesh convergence of the NFEA method
is analyzed. The results show convergence rates depend on the two meshes used in the rate calculation, and the rates are close to or
above 1.75. In the second example, a Mode-I crack propagation problem is taken up. Using this example, several results are obtained:
first, the convergence rate with mesh refinement; second, the solution is compared with the solution from the meshfree discretization
based on [14,24,30]; and, third, the localization of damage zone is shown with refinement of horizon. The third example involves a
square specimen with a circular hole under displacement-controlled axial loading. This example shows the nucleation of the crack
12 
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from the two points in the boundary of a hole. The fourth example is about the bending loading of the V-notch structure. This
example also shows the crack nucleation. The last problem motivated by [49, Figure 18] includes a rectangle specimen with a hole
nd pre-crack. This example shows the effect of stress concentration near the hole on crack path and propagation. The section ends
ith a discussion of the crack speeds for the four problems.

Numerical results were obtained using a code similar to the C++ code NLMech [50,51]. In all results, the mesh consisted of
inear triangle elements. The second-order quadrature scheme calculates the integration over a finite element (triangle elements);
ee next subsection. The strain field – symmetric gradient of the displacement – is constant over each element and computed at

the element’s center. For the triangulation of a domain with a void and notch, an open-source library Gmsh [52] is utilized, and
Paraview [53] is used to visualize the results.

7.1. Computation of a peridynamics force in NFEA

This section develops a computationally efficient approximation of the peridynamics forces at nodes based on the discrete
summation of the node–node interaction. As a result of the approximation, the NFEA and meshfree methods will have the same
computational complexity. The downside of the approximation, however, is the loss of accuracy. In the a-priori error analysis, the
discretization error of nodal peridynamics forces is not considered.

Let 𝒖𝑘ℎ, 𝒗
𝑘
ℎ ∈ 𝑉ℎ be the finite element displacement and velocity functions, 𝑉ℎ being the finite element space (see (25) and

Section 3.1). Corresponding to 𝒖𝑘ℎ and 𝒗𝐾ℎ , suppose 𝑼𝑘,𝑽 𝑘 are nodal displacement and velocity vectors, respectively, i.e., 𝑼𝑘 =
(𝑼𝑘

1 ,… ,𝑼𝑘
𝑁 ),𝑽 𝑘 = (𝑽 𝑘

1 ,… ,𝑽 𝑘
𝑁 ). Velocity is given by

𝑽 𝑘
𝑖 = (𝑼𝑘

𝑖 − 𝑼𝑘−1
𝑖 )∕𝛥𝑡

when 𝑘 ≥ 1 and 𝑽 𝑘
𝑖 = 𝒗0(𝒙𝑖) when 𝑘 = 0, where 𝒗0 is the prescribed initial condition for the velocity. From (26), 𝑼𝑘 is computed

using, for 𝑘 ≥ 1 and all 𝑖,

𝑼𝑘+1
𝑖 = 𝛥𝑡2

𝑭 (𝒖𝑘ℎ)(𝒙𝑖) + 𝒃(𝒙𝑖, 𝑡𝑘)
𝜌

+ 2𝑼𝑘
𝑖 − 𝑼𝑘−1

𝑖 (76)

and, for 𝑘 = 0 and all 𝑖,

𝑼 1
𝑖 =

𝛥𝑡2

2
𝑭 (𝒖0ℎ)(𝒙𝑖) + 𝒃(𝒙𝑖, 0)

𝜌
+ 𝛥𝑡𝒗0(𝒙𝑖) + 𝒖0(𝒙𝑖). (77)

In the above, the numerical evaluation of peridynamics force 𝑭 (𝒖𝑘ℎ)(𝒙𝑖) is nontrivial and, therefore, is detailed next.
From (10), it holds that

𝑭 (𝒖𝑘ℎ)(𝒙𝑖) =
∑

𝑇∈ℎ
∫𝐻𝜖 (𝒙𝑖)∩𝑇

𝜔(𝒙𝑖)𝜔(𝒚)
w𝑑𝜖𝑑+1

𝐽 𝜖(|𝒚 − 𝒙𝑖|)𝜓 ′(|𝒚 − 𝒙𝑖|𝑆(𝒚,𝒙𝑖; 𝒖𝑘ℎ)
2)𝑆(𝒚,𝒙𝑖; 𝒖𝑘ℎ)

𝒚 − 𝒙𝑖
|𝒚 − 𝒙𝑖|

𝑑𝒚.

Let 𝑁𝑇 be the list of nodes that are vertices of element 𝑇 . Recall that 𝜙𝑖 denotes the interpolation function of node 𝑖. For 𝒚 ∈ 𝑇 ,
𝒖𝑘ℎ(𝒚) =

∑

𝑗∈𝑁𝑇 𝜙𝑗 (𝒚)𝑼
𝑘
𝑗 . Also, for any node 𝑖, 𝒖𝑘ℎ(𝒙𝑖) = 𝑼𝑘

𝑖 =
∑

𝑗∈𝑁𝑇 𝜙𝑗 (𝒚)𝑼
𝑘
𝑖 for all 𝒚 ∈ 𝑇 (due to the partition of unity property,

.e., ∑𝑗∈𝑁𝑇 𝜙𝑗 (𝒚) = 1). Combining, it follows that

𝑭 (𝒖𝑘ℎ)(𝒙𝑖) =
∑

𝑇∈ℎ

[

∑

𝑗∈𝑁𝑇
∫𝐻𝜖 (𝒙𝑖)∩𝑇

𝜔(𝒙𝑖)𝜔(𝒚)
w𝑑𝜖𝑑+1

𝐽 𝜖(|𝒚 − 𝒙𝑖|)𝜓 ′(|𝒚 − 𝒙𝑖|𝑆(𝒚,𝒙𝑖; 𝒖𝑘ℎ)
2)

(

𝜙𝑗 (𝒚)
𝑼𝑘
𝑗 − 𝑼𝑘

𝑖

|𝒚 − 𝒙𝑖|
⋅
𝒚 − 𝒙𝑖
|𝒚 − 𝒙𝑖|

)

𝒚 − 𝒙𝑖
|𝒚 − 𝒙𝑖|

𝑑𝒚
]

.

Motivated from the above, peridynamics force 𝑭 (𝒖𝑘ℎ)(𝒙𝑖) can be approximated as follows

𝑭 (𝒖𝑘ℎ)(𝒙𝑖) ≈
∑

𝑗∈PD𝑖

𝜔(𝒙𝑖)𝜔(𝒙𝑗 )
w𝑑𝜖𝑑+1

𝜓 ′(|𝒙𝑗 − 𝒙𝑖|𝑆(𝒙𝑗 ,𝒙𝑖; 𝒖𝑘ℎ)
2)

(

𝑼𝑘
𝑗 − 𝑼𝑘

𝑖

|𝒙𝑗 − 𝒙𝑖|
⋅
𝒙𝑗 − 𝒙𝑖
|𝒙𝑗 − 𝒙𝑖|

)

𝒙𝑗 − 𝒙𝑖
|𝒙𝑗 − 𝒙𝑖|

⎡

⎢

⎢

⎣

∑

𝑒∈𝐸𝑗
∫𝐻𝜖 (𝒙𝑖)∩𝑇𝑒

𝐽 𝜖(|𝒚 − 𝒙𝑖|)𝜙𝑗 (𝒚)𝑑𝒚
⎤

⎥

⎥

⎦

,

(78)

where, 𝐸𝑗 is the list of elements with node 𝑗 as its vertex, see Fig. 3, and PD𝑖 is the list of neighboring nodes 𝑗 and it is defined as

PD𝑖 ∶= {1 ≤ 𝑗 ≤ 𝑁 ∶ 𝑇𝑒 ∩𝐻𝜖(𝒙𝑖) ≠ ∅ for at least one 𝑒 ∈ 𝐸𝑗} . (79)

Note that {1 ≤ 𝑗 ≤ 𝑁 ∶ 𝒙𝑗 ∈ 𝐻𝜖(𝒙𝑖)} ⊂ PD𝑖, i.e., PD𝑖 consists of nodes that are in the horizon 𝐻𝜖(𝒙𝑖) and additional nodes outside
(𝒙 ) which may belong to element 𝑇 that intersects 𝐻 (𝒙 ). The above form of approximation is not unique, as one may also
𝜖 𝑖 𝑒 𝜖 𝑖
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Algorithm 1 NFEA implementation.
1: Read nodes and element-node connectivity from the mesh file
2: %% Task: Create neighbor list and compute 𝑉𝑖𝑗 using (81)
3: for Each integer 0 ≤ 𝑖 ≤ 𝑁 − 1 do % 𝑁 is the total number of nodes
4: for Element 𝑒 ∈ 𝐸𝑗 do % 𝐸𝑗 list of elements with node 𝑗 as vertex
5: for 1 ≤ 𝑞 ≤ 𝑄𝑒 do % Loop over quadrature points of element 𝑇𝑒
6: if |𝒙𝑞 −𝑿[𝑖]| ≤ 𝜖 then
7: Add 𝑗 to neighborList[𝑖]
8: Compute 𝑉𝑖𝑗 using (80), add 𝑉𝑖𝑗 to V[𝑖]
9: end if

10: end for
11: end for
12: end for% End of loop over nodes for neighborlist
13: %% Task: Integrate in time
14: for Each integer 0 ≤ 𝑘 ≤ 𝑡𝐹 ∕𝛥𝑡 do
15: % 𝑼 ,𝑽 are the displacement and velocity at step 𝑘
16: %% Task: Compute force 𝑭 using (82)
17: Initialize vector 𝑭 with zeros
18: for Each integer 0 ≤ 𝑖 ≤ 𝑁 − 1 do
19: for Each integer 𝑗 ∈ neighborList[𝑖] do
20: 𝑆−𝑗 𝑖 = 𝑼 [𝑗]−𝑼 [𝑖]

|𝑿[𝑗]−𝑿[𝑖]| ⋅
𝑿[𝑗]−𝑿[𝑖]
|𝑿[𝑗]−𝑿[𝑖]|

21: 𝑭 [𝑖] = 𝑭 [𝑖] + 𝜔(𝑿[𝑖])𝜔(𝑿[𝑗])
w𝑑 𝜖𝑑+1

𝜓 ′(|𝑿[𝑗] −𝑿[𝑖]|𝑆−𝑗 𝑖2)𝑆−𝑗 𝑖 𝑿[𝑗]−𝑿[𝑖]
|𝑿[𝑗]−𝑿[𝑖]| 𝑉 [𝑖][𝑗]

22: end for
23: end for% End of loop over nodes for 𝑭
24: %% Task: Update displacement 𝑼 and velocity 𝑽
25: for Each integer 0 ≤ 𝑖 ≤ 𝑁 − 1 do
26: for Each integer 0 ≤ 𝑙 ≤ 𝑑 − 𝑖 do % 𝑑 is the dimension of the problem
27: 𝑼−𝑡𝑒𝑚𝑝 = 𝑼 [𝑖][𝑙]
28: if dof 𝑙 of node 𝑖 is free then
29: 𝑼 [𝑖][𝑙] = 𝑼 [𝑖][𝑙] + 𝛥𝑡𝑽 [𝑖][𝑙] + 𝛥𝑡2 𝑭 [𝑖][𝑙]+𝒃−𝑙(𝑿[𝑖],𝑘𝛥𝑡)

𝜌(𝑿[𝑖])
30: else
31: Read 𝑼 [𝑖][𝑙] from boundary condition
32: end if
33: 𝑽 [𝑖][𝑙] = 𝑼 [𝑖][𝑙]−𝑼−𝑡𝑒𝑚𝑝[𝑖][𝑙]

𝛥𝑡
34: end for
35: end for% End of loop over nodes for 𝑼 and 𝑽 update
36: end for% End of loop over time

approximate the force as

𝑭 (𝒖𝑘ℎ)(𝒙𝑖) ≈
∑

𝑗∈PD𝑖

𝜔(𝒙𝑖)𝜔(𝒙𝑗 )
w𝑑𝜖𝑑+1

(

𝑼𝑘
𝑗 − 𝑼𝑘

𝑖

|𝒙𝑗 − 𝒙𝑖|
⋅
𝒙𝑗 − 𝒙𝑖
|𝒙𝑗 − 𝒙𝑖|

)

𝒙𝑗 − 𝒙𝑖
|𝒙𝑗 − 𝒙𝑖|

⎡

⎢

⎢

⎣

∑

𝑒∈𝐸𝑗
∫𝐻𝜖 (𝒙𝑖)∩𝑇𝑒

𝜓 ′(|𝒚 − 𝒙𝑖|𝑆(𝒚,𝒙𝑖; 𝒖𝑘ℎ)
2)𝐽 𝜖(|𝒚 − 𝒙𝑖|)𝜙𝑗 (𝒚)𝑑𝒚

⎤

⎥

⎥

⎦

.

Similarly, other forms of approximation are possible by keeping some terms outside and some inside of the integration. In our
mplementation, the approximation (78) is used for two reasons: 1. The term in the square bracket is independent of time and,
herefore, can be computed only once in the beginning and stored, and 2. The choice of keeping nonlinear term outside the integral
s well as the vector (𝒙𝑗 − 𝒙𝑖)∕|𝒙𝑗 − 𝒙𝑖| gives a stable simulation, and numerical results agree well with the benchmark problems.
roceeding further, let 𝑉𝑖𝑗 be the weighted volume of a node 𝑗 for a pairwise force contribution to the node 𝑖. It is defined as

𝑉𝑖𝑗 =
∑

𝑒∈𝐸𝑗
∫𝐻𝜖 (𝒙𝑖)∩𝑇𝑒

𝐽 𝜖(|𝒚 − 𝒙𝑖|)𝜙𝑗 (𝒚)𝑑𝒚. (80)

The above integration over an element is computed using the quadrature rule. In all the numerical results, the second-order
quadrature rule is employed; higher-order schemes can be used as the above integration needs to be computed only once and stored
in the memory. Let 𝑄𝑒 be the number of quadrature points associated with the element 𝑒 (𝑒 is the element number, and 𝑇 is the
𝑒
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Table 1
Material properties. Formulae in (84) are used to compute
longitudinal (𝑐𝐿), shear (𝑐𝑆 ), and Rayleigh (𝑐𝑅) wave speeds.

Properties Values Properties Values

𝜌 (𝑘𝑔∕𝑚3) 1200 𝑐𝐿 (𝑚∕𝑠) 6123.7
𝐸 (𝐺 𝑃 𝑎) 37.5 𝑐𝑆 (𝑚∕𝑠) 3535.5
𝐺𝑐 (𝐽∕𝑚2) 500 𝑐𝑅 (𝑚∕𝑠) 3244.2

element). Further, let, for 𝑞 = 1,… , 𝑄𝑒, (𝒙𝑞 , 𝑤𝑞) is the pair of quadrature points and weights. Then

𝑉𝑖𝑗 =
∑

𝑒∈𝐸𝑗

[ 𝑄𝑒
∑

𝑞=1
𝜒𝐻𝜖 (𝒙𝑖)(𝒙𝑞)𝐽

𝜖(|𝒙𝑞 − 𝒙𝑖|)𝜙𝑗 (𝒙𝑞)𝑤𝑞

]

, (81)

where 𝜒𝐴(𝒙) is the indicator function taking value 1 if 𝒙 ∈ 𝐴 and 0 if 𝒙 ∉ 𝐴. Using the definition of 𝑉𝑖𝑗 , (78) can be written as

𝑭 (𝒖𝑘ℎ)(𝒙𝑖) ≈
∑

𝑗∈PD𝑖

𝜔(𝒙𝑖)𝜔(𝒙𝑗 )
w𝑑𝜖𝑑+1

𝜓 ′(|𝒙𝑗 − 𝒙𝑖|𝑆(𝒙𝑗 ,𝒙𝑖; 𝒖𝑘ℎ)
2)

(

𝑼𝑘
𝑗 − 𝑼𝑘

𝑖

|𝒙𝑗 − 𝒙𝑖|
⋅
𝒙𝑗 − 𝒙𝑖
|𝒙𝑗 − 𝒙𝑖|

)

𝒙𝑗 − 𝒙𝑖
|𝒙𝑗 − 𝒙𝑖|

𝑉𝑖𝑗 . (82)

In Fig. 3, one of the neighboring nodes 𝒙𝑗 contributing to the force at 𝒙𝑖 is shown on an example 2-d finite element mesh. Algorithm
1 presents the implementation of NFEA.

7.2. Material properties

Let 𝜌 denote the density, 𝐸 Young’s modulus, 𝜈 Poisson ratio, and 𝐺𝑐 critical energy release rate. The bond-based peridynamics
suffer from the restriction of Poisson ratio 𝜈 = 1∕4 in 3-d or 2-d plane strain and 𝜈 = 1∕3 in 2-d plane stress; see [54]. All of the
simulations are in 2-d, and plane strain is assumed. Therefore, 𝜈 is fixed to 1∕4.

To fix the parameters in the RNP model, see (9), the nonlinear potential function 𝜓 is set to 𝜓(𝑟) = 𝑐(1 − exp[−𝛽 𝑟]), where 𝑐 and
𝛽 are two model parameters. The influence function is taken to be 𝐽 𝜖(𝑟) = 𝐽 (𝑟∕𝜖), where 𝐽 (𝑟) = 1 − 𝑟 for 0 ≤ 𝑟 < 1 and 𝐽 (𝑟) = 0 for
𝑟 ≥ 1. The boundary function 𝜔(𝒙) is taken as 1 for all points 𝒙 in the domain, i.e., 𝜔(𝒙) = 1 for 𝒙 ∈ 𝐷. Given 𝐸, Lamé parameter
are 𝜆 = 𝜇 = 2𝐸∕5 (𝜈 = 1∕4 is assumed). The parameters 𝑐 and 𝛽, in 2-d, can be determined from (see [21])

𝑐 =
𝐺𝑐𝜋
4𝑀𝐽

, 𝛽 = 8𝐸
5𝑐 𝑀𝐽

, (83)

where, 𝑀𝐽 = ∫ 1
0 𝐽 (𝑟)𝑟

2𝑑 𝑟 = 1∕12 for 𝐽 (𝑟) = 1 − 𝑟. The inflection point of the potential function 𝜓 is given by 𝑟∗ = 1∕√2𝛽 and the
critical strain 𝑆𝑐 (𝒚,𝒙) = ±𝑟∗∕√|𝒚 − 𝒙|.

Let 𝑐𝐿, 𝑐𝑆 , and 𝑐𝑅 are the longitudinal, shear, and Rayleigh wave speeds, respectively. Given elastic properties such as 𝐸 and 𝜈,
ave speeds can be computed using the formulae:

𝑐𝐿 =

√

𝜆 + 2𝜇
𝜌

=

√

1
𝜌

𝐸(1 − 𝜈)
(1 + 𝜈)(1 − 2𝜈) , 𝑐𝑆 =

√

𝜇
𝜌
=
√

1
𝜌

𝐸
2(1 + 𝜈) , 𝑐𝑅 ≈ 𝑐𝑆

( 0.862 + 1.14𝜈
1 + 𝜈

)

, (84)

where the last formula to approximate Rayleigh wave speed can be found in [55]. Material properties employed in numerical
experiments are listed in Table 1.

Definition 7.1 (Damage). The damage at the material point 𝒙 is defined as

𝑍(𝒙) ∶= sup
𝒚∈𝐻𝜖 (𝒙)∩𝐷

|𝑆(𝒚,𝒙)|
|𝑆𝑐 (𝒚,𝒙)|

. (85)

Based on the above, if 𝑍(𝒙) ≥ 1, it follows that 𝒙 has at least one bond in the neighborhood with the bond strain above the critical
bond strain. The damage zone of the material is given by the set {𝒙 ∈ 𝐷 ∶ 𝑍(𝒙) ≥ 1}. Other measures of damage are also possible.
For example, consider a function 𝜑 given by

𝜑(𝒙) =
∫𝐻𝜖 (𝒙)∩𝐷

𝜇(𝒚,𝒙;𝑆)𝑑𝒚

∫𝐻𝜖 (𝒙)∩𝐷
𝑑𝒚

, (86)

where, 𝜇(𝒚,𝒙;𝑆) is a function that models the breakage of bond:

𝜇(𝒚,𝒙;𝑆) =
{

1, if 𝑆(𝒚,𝒙) < 𝑆𝑐 (𝒚,𝒙),
0, otherwise.

Thus, 𝜑(𝒙) ∈ [0, 1], and 𝜑(𝒙) = 0 implies all the bonds in the neighborhood of 𝒙 are stretched below the critical value, while 𝜑(𝒙) = 1
mplies all the bonds in the neighborhood have strains above the critical value.
15 



P.K. Jha et al. Computer Methods in Applied Mechanics and Engineering 434 (2025) 117519 
Fig. 4. (a) Convergence test: Setup. The horizon is fixed to 𝜖 = 0.05 m. (b) A representative view of the mesh consisting of linear triangle elements. (c) Rate
of convergence at discrete times using (87).

Fig. 5. Convergence test: Comparing the magnitude of displacement at the final simulation time 𝑡𝐹 for all four meshes. Unless otherwise stated, all the plots,
including this figure, are in the deformed configuration and based on the finite element representation.

Remark 7.2. The plots of fields, such as damage, displacement, and linearized strain (symmetric gradient of displacement), are
based on the finite element representation (surface plot in Paraview) and are in a deformed configuration unless otherwise stated
in the figure’s caption. The strain field is a piecewise constant over elements, and the strain value in each element is computed at
the element’s center.

The field 𝑍(𝒙) is displayed using two colors (blue and red) to visualize damage. The blue color means 𝑍(𝒙) ≤ 1 and the point
𝒙 is colored red if 𝑍(𝒙) ∶= max𝒚∈𝐻𝜖 (𝒙) |𝑆(𝒚,𝒙)|∕𝑆𝑐 (𝒚,𝒙) > 1, i.e., red colored point 𝒙 has at least one neighboring point 𝒚 such that
the bond 𝒙 – 𝒚 is stretched above the threshold stretch. Thus, red indicates that the point has at least one critically stretched bond.

7.3. Convergence test on square domain with displacement controlled loading

A simple example of displacement-controlled loading is considered to test the convergence of the Nodal FE approximation.
Consider a two-dimensional solid body 𝐷 = [0, 1m]2 with density 𝜌 = 1 k g∕m3, Young’s modulus 𝐸 = 1 Pa, and Poisson ratio
𝜈 = 0.25. Thickness is one meter, and the horizon is fixed to 𝜖 = 0.05 m. The left layer of specimens of 𝜖 thickness is clamped (zero
displacements in 𝑥 and 𝑦 directions). The layer on the right of thickness 𝜖 is subjected to displacement 𝒖𝑥(𝒙, 𝑡) = 0.01𝑠𝑖𝑛(2𝜋 𝑡) in the
𝑥 direction while the displacement in the 𝑦 direction is kept free; see Fig. 4(a). To test the convergence, four different mesh sizes
are considered: ℎ𝑖 = 𝜖∕𝑚𝑖 for 𝑖 = 1, 2, 3, 4 with 𝑚1 = 4, 𝑚2 = 8, 𝑚3 = 12, 𝑚4 = 16. The domain is discretized into the uniform grid, and
each grid is further divided into two triangles; see representative mesh in Fig. 4(b). The size of the grid is the mesh size. The final
simulation time is 𝑡𝐹 = 0.5 s, the time step size 𝛥𝑡 = 0.000125 s, and the results are written to file every 𝛥𝑡𝑜𝑢𝑡 = 0.01 s interval.

To calculate the convergence rate with mesh refinement, numerical solution 𝒖ℎ4 (𝑡𝑘) corresponding to the finest mesh is treated
as an exact solution, where 𝑡 , 𝑘 = 1, 2,… , 𝑡 ∕𝛥𝑡 , is the output time (time at which solutions are written to a file). Setting 𝒖 = 𝒖 ,
𝑘 𝐹 𝑜𝑢𝑡 ℎ4
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Fig. 6. (a) Mode-I crack problem: Setup. The horizon is 𝜖 = 2 mm. The center of the pre-crack coincides with the center of the domain. (b) Mode-I crack
problem: Convergence rate as the mesh is refined.

the rate of convergence at a time 𝑡𝑘 from two solutions 𝒖ℎ𝑖 (𝑡𝑘) and 𝒖ℎ𝑖+1 (𝑡𝑘) can be computed as follows:

𝛼(𝑡𝑘) =
log

(

‖𝒖ℎ𝑖 (𝑡𝑘) − 𝒖(𝑡𝑘)‖
)

− log
(

‖𝒖ℎ𝑖+1 (𝑡𝑘) − 𝒖(𝑡𝑘)‖
)

log(ℎ𝑖) − log(ℎ𝑖+1)
. (87)

Using the numerical solutions for three mesh sizes ℎ1 = 𝜖∕𝑚1, ℎ2 = 𝜖∕𝑚2, ℎ3 = 𝜖∕𝑚3 (ℎ4 is used as an ‘‘exact’’ solution), convergence
rates 𝛼(𝑡𝑘;𝑚1, 𝑚2) and 𝛼(𝑡𝑘;𝑚2, 𝑚3) at output times 𝑡𝑘, 𝑘 = 1, 2,… , 𝑡𝐹 ∕𝛥𝑡𝑜𝑢𝑡, are computed and displayed in Fig. 4(c). Results show
that the convergence rate is quite good and above 2 as the mesh size is reduced from 𝜖∕8 to 𝜖∕12. When reducing the mesh size from
𝜖∕4 to 𝜖∕8, the convergence rate is above 1.5 and below the optimal rate of 2 from the a-priori error analysis. These rates, however,
are excellent considering that the NFEA is similar to the meshfree discretization and approximates the nodal peridynamics forces
using a discrete summation of node–node interaction (integration through the quadrature method will increase the computational
cost). In Fig. 5, the magnitude of the displacement field is displayed for four simulations with different mesh sizes at the final time
𝑡𝐹 = 0.5 s. Visually, all the results are in agreement.

7.4. Mode-I crack propagation

Consider a square domain 𝐷 = [0, 100mm]2 with a vertical pre-crack of length 𝑙 = 20 mm located at the center; see Fig. 6(a)(a).
If a specimen has a pre-crack line/curve (surface in 3-d), it means that in the peridynamics simulation, all the bonds intersecting
the pre-crack line/curve (surface in 3-d) are initially broken and are kept broken during the course of the simulation. The constant
elocity of ±103 mm/s is specified on the small area on the left and right sides to obtain the mode-I crack propagation. The simulation
ime and the size of the time step are 𝑡𝐹 = 40 μs and 𝛥𝑡 = 0.0008 μs, respectively, and the output is written to a file every 𝛥𝑡𝑜𝑢𝑡 = 𝑡𝐹 ∕50
nterval. The nonlocal length-scale, i.e., horizon, is fixed to 𝜖 = 2 mm. In the simulations, the RNP model with the material properties
isted in Table 1 is employed.

As in the previous example, to get the estimated convergence rate with mesh refinement, discretized solutions for mesh sizes
𝑖 = 𝜖∕𝑚𝑖, 𝑖 = 1, 2, 3, 4, with 𝑚1 = 4, 𝑚2 = 8, 𝑚3 = 12, 𝑚4 = 16 are computed. The finite element solution 𝒖ℎ4 (𝑡𝑘) corresponding to the

finest mesh, i.e., ℎ = ℎ4 = 𝜖∕16, is employed as an exact solution 𝒖(𝑡𝑘) = 𝒖ℎ4 (𝑡𝑘), and using simulation results 𝒖ℎ1 (𝑡𝑘), 𝒖ℎ2 (𝑡𝑘), 𝒖ℎ3 (𝑡𝑘),
convergence rates 𝛼(𝑡𝑘;𝑚1, 𝑚2) and 𝛼(𝑡𝑘;𝑚2, 𝑚3) at output times 𝑡𝑘, 𝑘 = 1, 2,… , 𝑡𝐹 ∕𝛥𝑡𝑜𝑢𝑡, are computed following (87). Note that
𝑚1 and 𝑚2 in 𝛼(⋅;𝑚1, 𝑚2) indicate that the rate is for meshes ℎ1 = 𝜖∕𝑚1 and ℎ2 = 𝜖∕𝑚2. Two convergence rates, 𝛼(⋅;𝑚1, 𝑚2) and
(⋅;𝑚2, 𝑚3), are shown in Fig. 6(b). In Fig. 7, the fields 𝒖𝑥 and 𝑍 are compared for four meshes at time 𝑡 = 28𝜇 s. The results show

that the plots are visually indistinguishable.
Next, the plot of the damage function 𝑍 defined in (85) is presented in the left column of Fig. 8. In the right column, linearized

strain is computed from the displacement field, and its magnitude (magnitude of the strain tensor 𝑬 = 1
2

[

∇𝒖 + ∇𝒖𝑇 ] is taken as
‖𝑬‖ =

√

𝑬 ∶ 𝑬, where 𝑬 ∶ 𝑬 = 𝐸𝑖𝑗𝐸𝑖𝑗 is the dot product) is depicted. In all the numerical results, it is found that the width of
the process zone (damaged region) is approximately twice the horizon and envelopes the crack interface. Further, the strain tensor

agnitude is unusually higher at the crack interface, as expected. To show crack opening, in Fig. 9, the displacement is magnified by
 factor of 100 and added to the reference configuration, and the damage 𝑍 is displayed in the new artificial deformed configuration.

7.4.1. Comparing NFEA with meshfree method
To validate NFEA by comparing with the existing meshfree method employed in [14,24,30], the present problem of mode-I

racture is used. Specifically, for the mesh size ℎ = 𝜖∕8, the peridynamics equation is solved using NFEA and the meshfree method.
The rest of the parameters and the setup are the same as above. The plots of the damaged region (𝑍(𝒙)) are presented in Fig. 10.
The figure shows that the NFEA produces results similar to those of the meshfree method.
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Fig. 7. Mode-I crack problem: Comparing 𝒖𝑥 and 𝑍 fields for different mesh sizes at time 𝑡 = 28 μs. In the bottom row for the plots of damage field 𝑍, note
that the red indicates that the point has at least one critically stretched bond; see Remark 7.2.

Fig. 8. Mode-I crack problem: Plot of damage (top row) and the magnitude of the strain 𝑬 = 1
2

[

∇𝒖 + ∇𝒖𝑇 ] (bottom row). The damage and strains are
localized near the crack interface. The thickness of the damage zone in the left column (red region) is approximately twice the horizon. Since the finite element
displacement is continuous and piecewise linear, the strain tensor field over each element is constant, and the value is computed at the element’s center.
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Fig. 9. Mode-I crack problem: Plot of damage in the deformed configuration after scaling the displacement field by 100 to show the crack opening. The plots
are obtained using the nodal data (without finite element representation) to show a clear opening. This procedure is repeated in other figures where the opening
is visualized by scaling the displacement field.

7.4.2. Localization of damage
The mode-I fracture problem from the above is employed to show that NFEA can capture the localization of damage and

convergence with respect to the nonlocal length scale. To allow comparisons of results for different nonlocal length scales, in the
setup of the mode-I fracture problem in Fig. 6(a), the thickness of the left and right layers (where displacement boundary condition
is applied) is fixed to 3 mm, i.e., the thickness of the layers does not change with the nonlocal length scale. Keeping the rest of the
setup details the same, including the final time and time step size, the mode-I fracture is simulated for three horizons 𝜖 ∈ 3, 2, 1 mm.
Given a horizon 𝜖, the mesh size is fixed to ℎ = 𝜖∕4. In Fig. 11, the damaged region 𝑍(𝒙) > 1 is compared for three horizons at
sample times. The results show damage localization as the nonlocal length scale is refined. Most importantly, points on the left of
the localized damage zone do not interact with those on the right, and we have formed a piece of crack.

7.5. Material with a circular hole subjected to an axial loading

A material with a hole, as shown in Fig. 12, is subjected to displacement-controlled axial pulling. The details of the setup and
boundary conditions are given in Fig. 12. The remaining parameters are fixed as follows: horizon 𝜖 = 1 mm, mesh size ℎ = 0.25 mm,
final time of the simulation 𝑡𝐹 = 160 μs, and the size of the time step 𝛥𝑡 = 0.0016 μs. Peridynamics force is computed using the RNP
model.

The damage profile and the strains are presented in Fig. 13. Crack nucleation is seen when the internal stresses become large
enough. It is also clear that the crack nucleates at the top and bottom edges of the void where the stresses are most significant; see
Fig. 13(e). To visualize crack opening and branching, the displacement field is magnified by a factor of 50 in Fig. 14. Branching of
the cracks is also seen at later times.

7.6. Material with a v-notch under bending load

In this example, a rectangle beam with a v-notch is subjected to the bending load as shown in Fig. 15. The horizon is fixed to
𝜖 = 1 mm, mesh size ℎ = 0.25 mm, final simulation time 𝑡𝐹 = 250 μs, and the size of the time step 𝛥𝑡 = 0.001667 μs. Peridynamics
force is based on the RNP model.

The damage profile and the magnitude of the strain are presented in Fig. 16. As expected, the crack nucleates at the tip of
the notch where the strain is most significant. Similar to the previous example, displacement is magnified by 50 to highlight the
separation of the structure in Fig. 17.

7.7. Material with a circular hole and pre-crack

As a final example, a rectangular domain with an existing horizontal pre-crack and a circular hole in the neighborhood of a
crack is considered. The setup, as shown in Fig. 18, is motivated by a similar example in [49]. The horizon is fixed to 𝜖 = 0.4 mm,
mesh size ℎ = 0.1 mm, the final simulation time 𝑡𝐹 = 800 μs, and the size of the time step 𝛥𝑡 = 0.004 μs. The peridynamics force is
computed using the RNP model.

Damage and the magnitude of the strain at different times are displayed in Fig. 19. Initially, crack propagation is influenced
by the hole nearby, and instead of growing horizontally, it is deflected. At later times, when the crack tip moves past the hole,
the crack propagates horizontally. A similar problem was considered in [49, Figure 18], where results using different numerical
methods were compared. The results of this work qualitatively agree with that in [49]. In Fig. 20, strain fields at different times are
presented. Opening of the crack is visualized in Fig. 21.
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Fig. 10. Mode-I crack problem: Comparing NFEA and meshfree results for the mode-I fracture problem. Here, the first column plots the damaged zone from
the meshfree method, the second column from NFEA, and the overlap of the damaged regions from the two methods is presented in the last column; the opacity
of both plots is set to 50% in the overlap plot. The rows correspond to the results at different times. From the plots in the third column, it is clear that the
damaged regions from both methods are quite close.
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Fig. 11. Mode-I crack problem with fixed thickness of boundary condition layers: Comparing damaged zone for three different horizons at fixed times. The
damaged region 𝑍(𝒙) > 1 shown in color other than blue is overlapped for three horizons, 𝜖 ∈ {3, 2, 1} mm. Light yellow, cyan, and purple regions correspond
to 𝜖 = 3 mm, 𝜖 = 2 mm, and 𝜖 = 1 mm, respectively. It is seen that the damaged region corresponding to the smallest horizon is contained inside the damaged
region for the largest horizon. This demonstrates the localization of damage as 𝜖 is reduced.

Fig. 12. Circular hole problem: Setup. The horizon is 𝜖 = 1 mm. Constant velocity in the opposite direction is specified along the 𝑥-axis in the left (blue) and
right (red) layers.

Fig. 13. Circular hole problem: Plot of damage (top row) and the magnitude of the strain 𝑬 = 1
2

[

∇𝒖 + ∇𝒖𝑇 ] (bottom row). A crack is seen nucleating at the
two points on the hole’s edge where the strain is maximum.
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Fig. 14. Circular hole problem: Plot of damage in the deformed configuration after scaling the displacement field by 50 to show the crack opening.

Fig. 15. V-notch problem: Setup. The horizon in this problem is 𝜖 = 1 mm. Vertically downward distributed force is applied on the part of the top edge, as
shown in red. The profile of distributed load is shown above the red line, where the loading parameter 𝑓𝑚𝑎𝑥 is set to 𝑓𝑚𝑎𝑥 = 2.5 × 105 N/(μs⋅ mm).

Table 2
Maximum and average normalized crack speeds for the four numerical problems.

Problem type max
(

𝑣
𝑐𝑅

)

avg
(

𝑣
𝑐𝑅

)

Problem type max
(

𝑣
𝑐𝑅

)

avg
(

𝑣
𝑐𝑅

)

Mode-I crack 0.9 0.51 Circular hole 0.95 0.52
V-notch 0.47 0.22 Circular hole with pre-crack 0.32 0.04

7.8. On the crack propagation speed

In this subsection, the crack propagation speeds from four problems are compared. Let 𝑡1 and 𝑡2 be times when the crack begins
and stops propagating, respectively. Also, let 𝑣(𝑡), for 𝑡 ∈ [𝑡1, 𝑡2], be the crack speed computed from the simulation at time 𝑡. To plot
the crack speeds for all four examples in one plot, time 𝑡 ∈ [𝑡1, 𝑡2] is transformed to 𝑡 = (𝑡− 𝑡1)∕(𝑡2− 𝑡1) so that 𝑡 ∈ [0, 1]. Let 𝑣̄(𝑡) = 𝑣(𝑡)
be the crack speed as a function of normalized time 𝑡. Next, crack speed is normalized by dividing the Rayleigh wave speed 𝑐𝑅; 𝑐𝑅
from Table 1 is 3244.2 m∕s.

Fig. 22 presents the normalized crack speed as a function of normalized time for the four problems. As expected, the normalized
crack speeds are below 1, i.e., the crack propagates slower than the Rayleigh wave speed; see Table 2, which lists the maximum
and average values of normalized crack speeds.

8. Conclusion

This work analyzed the nodal finite element approximation for the peridynamics. Assuming exact solutions are in proper function
spaces, consistency errors are shown to be bounded, and a-priori convergence of the discretization is established. The nodal finite
element discretization implementation is discussed in detail, and a range of numerical experiments are performed using the method
to show the utility of the approximation. The nodal finite element approximation is relatively straightforward and can be easily
integrated with the standard finite element meshing libraries. Further, the method is computationally faster than the standard finite
element approximation because the mass matrix is diagonal, and the nonlocal force calculation is similar to finite-difference/mesh-
free approximation. Since NFEA is based on finite element representation and mesh, the coupling peridynamics with other PDE-based
models for multiphysics simulation is straightforward.
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Fig. 16. V-notch problem: Plot of damage and the magnitude of the strain. Crack nucleates at the tip of the notch where the strain is maximum.

Fig. 17. V-notch problem: Plot of damage in the deformed configuration after scaling the displacement field by 50 to highlight the separation of the structure.

The work also presents an alternative NFEA method based on Cl’ement interpolation. This work considers Cl’ement interpolation
only theoretically. The a-priori error estimates in the alternative NFEA improve the NFEA a-priori error estimates, and the regularity
requirement on the exact solution in Clément NFEA is less restrictive. Future work will explore implementing the alternative NFEA
method and developing a-posteriori error estimates.
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Fig. 18. Circular hole and pre-crack problem: Setup. The horizon is 𝜖 = 0.4 mm. The magnitude of the prescribed vertical velocity on the top and bottom
layers is 𝑣̄ = 25 mm/s.

Fig. 19. Circular hole and pre-crack problem: Plot of damage.
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Fig. 20. Circular hole and pre-crack problem: Plot of the magnitude of strain 𝑬 = 1
2

[

∇𝒖 + ∇𝒖𝑇 ].
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Fig. 21. Circular hole and pre-crack problem: Plot of damage in the deformed configuration after scaling the displacement field by 50 to show the crack
opening.
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Fig. 22. Comparison of the normalized crack speed for the four problems.
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