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Abstract

A model for dynamic damage propagation is developed using nonlocal poten-
tials. The model is posed using a state-based peridynamic formulation. The
resulting evolution is seen to be well posed. At each instant of the evolution,
we identify a damage set. On this set, the local strain has exceeded critical values
either for tensile or hydrostatic strain, and damage has occurred. The damage set
is nondecreasing with time and is associated with damage state variables defined
at each point in the body. We show that a rate form of energy balance holds at
each time during the evolution. Away from the damage set, we show that the
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nonlocal model converges to the linear elastic model in the limit of vanishing
nonlocal interaction.

Keywords
Damage model · Nonlocal interactions · Energy dissipation · State-based
peridynamics

Introduction

In this chapter, we address the problem of damage propagation in materials. Here
the damage evolution is not known a priori and is found as part of the problem
solution. Our approach is to use a nonlocal formulation with the purpose of using
the least number of parameters to describe the model. We will work within the small
deformation setting, and the model is developed within a state-based peridynamic
formulation. Here strains are expressed in terms of displacement differences as
opposed to spatial derivatives. For the problem at hand, the nonlocality provides the
flexibility to simultaneously model non-differentiable displacements and damage
evolution. The net force acting on a point x is due to the strain between x and
neighboring points y. The neighborhood of nonlocal interaction between x and its
neighbors y is confined to ball of radius ı centered at x denoted by Bı.x/. The
radius of the ball is called the called the horizon. Numerical implementations based
on nonlocal peridynamic models exhibit formation and localization of features
associated with phase transformation and fracture (see, e.g., Dayal and Bhattacharya
2006; Silling and Lehoucq 2008; Silling et al. 2010; Foster et al. 2011; Agwai et al.
2011; Lipton et al. 2016; Bobaru and Hu 2012; Ha and Bobaru 2010; Silling and
Bobaru 2005; Weckner and Abeyaratne 2005; Gerstle et al. 2007; Weckner and
Emmrich 2005). A recent review can be found in Bobaru et al. (2016).

The recent model studied in Lipton (2014, 2016), Lipton et al. (2016), and Jha
and Lipton (2017) is defined by double-well two-point strain potentials. Here one
potential well is centered at the origin and associated with elastic response, while
the other well is at infinity and associated with surface energy. The rational for
studying these models is that they are shown to be well posed, and in the limit of
vanishing nonlocality, the dynamics recovers features associated with sharp fracture
propagation (see Lipton 2014, 2016). While memory is not incorporated in this
model, it is seen that the inertia of the evolution keeps the forces in a softened
state over time as evidenced in simulations (Lipton et al., 2016). This modeling
approach is promising for fast cracks, but for cyclic loading and slowly propagating
fractures, an explicit damage-fracture modeling with memory is needed. In this
work, we develop this approach for more general models that allow for three-point
nonlocal interactions and irreversible damage. The use of three-point potentials
allows one to model a larger variety of elastic properties. In the lexicon of
peridynamics, we adopt an ordinary state-based formulation (Silling, 2000; Silling
et al., 2007). We introduce nonlocal forces that soften irreversibly as the shear
strain or dilatational strain increases beyond critical values. This model is shown
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to deliver a mathematically well-posed evolution. Our proof of this is motivated by
recent work Emrich and Phulst (2016) where existence of solution for bond-based
peridynamic models with damage is established. Recently another well-posed bond-
based model with damage has been proposed in Du et al. (2017) where fracture
simulations are carried out.

In addition to being state based, our modeling approach differs from Emrich
and Phulst (2016) and earlier bond-based work Silling and Askari (2005) and
uses differentiable damage variables. This feature allows us to establish an energy
balance equation relating kinetic energy, potential energy, and energy dissipation at
each instant during the evolution. At each instant, we identify the set undergoing
damage where the local energy dissipation rate is positive. On this set, the
local strain has exceeded a critical value, and damage has occurred. Damage is
irreversible, and the damage set is monotonically increasing with time. Explicit
damage models are illustrated, and stress strain curves for both cyclic loading
and strain to failure are provided. These models are illustrated in two numerical
examples. In the first example, we consider a square domain and apply a time
periodic y-directed displacement along the top edge while fixing the bottom, left and
right edges. We track the strain and force over three loading periods. The simulations
show that bonds suffer damage and the strain vs force plot is similar to the one
predicted by the damage law (see Fig. 14). In the second example, we apply a shear
load to the top edge while fixing the bottom edge and leaving left and right edges
free. As expected, we find that damage appears along the diagonal of square (see
Fig. 15).

We conclude by noting that for this model the forces scale inversely with the
length of the horizon. With this in mind, we consider undamaged regions, and we
are able to show that the nonlocal operator converges to a linear local operator
associated with the elastic wave equation. In this limit, the elastic tensor can have
any combination of Poisson’s ratio and Young’s modulus. The Poisson’s ratio
and Young modulus are determined uniquely by explicit formulas in terms of the
nonlocal potentials used to define the model. This result is consistent with small
horizon convergence results for convex energies (see Emmrich and Weckner 2007;
Mengesha and Du 2014; Silling and Lehoucq 2008). Further reading and complete
derivations can be found in the recent monograph Lipton et al. (2018).

Formulation

In this work, we assume the displacements u are small (infinitesimal) relative to the
size of the three-dimensional bodyD. The tensile strain is denoted S D S.y; x; t I u/
and given by

S.y; x; t I u/ D
u.t; y/ � u.t; x/

jy � xj
� ey�x; ey�x D

y � x

jy � xj
; (1)



4 Robert Lipton et al.

where ey�x is a unit direction vector and � is the dot product. It is evident
that S.y; x; t I u/ is the tensile strain along the direction ey�x . We introduce the
nonnegative weight !ı.jy�xj/ such that !ı D 0 for jy�xj > ı and the hydrostatic
strain at x is defined by

�.x; t I u/ D
1

Vı

Z
D\Bı.x/

!ı.jy � xj/jy � xjS.y; x; t I u/ dy; (2)

where Vı is the volume of the ball Bı.x/ of radius ı centered at x. The weight is
chosen such that !ı.jy � xj/ D !.jy � xj=ı/ and

`1 D
1

Vı

Z
Bı.x/

!ı.jy � xj/ dy <1: (3)

We follow Silling (2000) and Emrich and Phulst (2016) and introduce a nonneg-
ative damage factor taking the value one in the undamaged region and zero in the
fully damaged region. The damage factor for the force associated with tensile strains
is written HT .u/.y; x; t/; the corresponding factor for hydrostatic strains is written
HD.u/.x; t/. Here we assume no damage and HT .u/.y; x; t/ D 1 until a critical
tensile strain Sc is reached. For tensile strains greater than Sc , damage is initiated
and HT .y; x; t/ drops below 1. The fully damaged state is HT .y; x; t/ D 0. For
hydrostatic strains, we assume no damage until a critical positive dilatational strain
�Cc or a negative compressive strain (��c ) is reached. Again HD.x; t/ D 1 until a
critical hydrostatic strain is reached and then drops below 1 with the fully damaged
state being HD.x; t/ D 0. We postpone description of the specific form of the
history-dependent damage factors until after we have defined the nonlocal forces.

The force at a point x due to tensile strain is given by

LT .u/.x; t/ D 2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
HT .u/.y; x; t/@S

f .
p
jy � xjS.y; x; t I u//ey�x dy; (4)

Here J ı.jy�xj/ is a nonnegative bounded function such that J ı D 0 for jy�xj > ı
and M D supfy 2 Bı.x/IJ ı.jy � xj/g and

`2 D
1

Vı

Z
Bı.x/

J ı.jy � xj/

jy � xj2
dy <1 and `3 D

1

Vı

Z
Bı.x/

J ı.jy � xj/

jy � xj3=2
dy <1:

(5)

Both J ı and !ı are prescribed and characterize the influence of nonlocal forces
on x by neighboring points y. Here @S is the partial derivative with respect to strain.
The function f D f .r/ is twice differentiable for all arguments r on the real line,
and f 0 and f 00 are bounded. Here we take f .r/ D ˛r2=2 for r < r1 and f D r for
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Fig. 1 Generic plot of f .r/ (Solid line) and g.r/ (Dashed line)

r2 < r , with r1 < r2 (see Fig. 1). The factor
p
jy � xj appearing in the argument of

@Sf ensures that the nonlocal operator LT converges to the divergence of a stress
tensor in the small horizon limit when it’s known a priori that displacements are
smooth (see section “Linear Elastic Operators in the Small Horizon Limit”).

The force at a point x due to the hydrostatic strain is given by

LD.u/.x; t/ D 1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2

�
HD.u/.y; t/@�g.�.y; t I u//C (6)

HD.u/.x; t/@�g.�.x; t I u//
�
ey�x dy; (7)

where the function g.r/ D ˇr2=2 for r < r�1 , g D r for r�2 < r , with r�1 < r�2
and g is twice differentiable and g0 and g00 are bounded (see Fig. 1). It is readily
verified that the force LT .u/.x; t/ C LD.u/.x; t/ satisfies balance of linear and
angular momentum.

The damage factor for tensile strain HT .u/.y; x; t/ is given in terms of the
functions h.x/ and jS.x/. Here h is nonnegative, has bounded derivatives (hence
Lipschitz continuous), takes the value one for negative x and for x � 0 decreases,
and is zero for x > xc (see Fig. 2). Here we are free to choose xc to be any small
and positive number. The function jS.x/ is nonnegative, has bounded derivatives
(hence Lipschitz continuous), takes the value zero up to a positive critical strain SC ,
and then takes on positive values. We will suppose jS.x/ � � jxj for some � > 0

(see Fig. 3). The damage factor is now defined to be

HT .u/.y; x; t/ D h

�Z t

0

jS .S.y; x; � I u// d�

�
: (8)
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Fig. 2 Generic plot of h.x/

Fig. 3 Generic plot of jS .x/
with Sc

It is clear from this definition that damage occurs when the stress exceeds Sc for
some period of time and the bond force decreases irrevocably from its undamaged
value. The damage function defined here is symmetric, i.e., HT .u/.y; x; t/ D
HT .u/.x; y; t/. For hydrostatic strain, we introduce the nonnegative function j�
with bounded derivatives (hence Lipschitz continuous). We suppose j� D 0 for an
interval containing the origin given by .��c ; �

C
c / and take positive values outside this

interval (see Fig. 4). As before we will suppose j� .x/ � � jxj for some � > 0. The
damage factor for hydrostatic strain is given by

HD.u/.x; t/ D h

�Z t

0

j� .�.x; � I u// d�

�
: (9)

For this model, it is clear that damage can occur irreversibly for compressive or
dilatational strain when the possibly different critical values ��c or �Cc are exceeded.
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Fig. 4 Generic plot of j� .x/
with �Cc , and ��c

The damage set at time t is defined to be the collection of all points x for which
HT .y; x; t/ or HD.u/.x; t/ is less than one. This set is monotonically increasing
in time. The process zone at time t is the collection of points x undergoing
damage such that @tHT .y; x; t/ < 0 or @tHD.x; t/ < 0. Explicit examples of
HT .u/.y; x; t/ and HD.u/.x; t/ are given in section “Explicit Damage Models,
Cyclic Loading, and Strain to Failure”.

We define the body force b.x; t/, and the displacement u.x; t/ is the solution of
the initial value problem given by

�@2t u.x; t/ D LT .u/.x; t/C LD.u/.x; t/C b.x; t/ for x 2 D and t 2 .0; T /;
(10)

with initial data

u.x; 0/ D u0.x/; @tu.x; 0/ D v0.x/: (11)

It is easily verified that this is an ordinary state-based peridynamic model. We show
in the next section that this initial value problem is well posed.

Existence of Solutions

The regularity and existence of the solution depend on the regularity of the initial
data and body force. In this work, we choose a general class of body forces and
initial conditions. The initial displacement u0 and velocity v0 are chosen to be
integrable and bounded and belonging to L1.DIR3/. The space of such functions
is denoted by L1.DIR3/. The body force b.x; t/ is chosen such that for every
t 2 Œ0; T0�, b takes values in L1.D;R3/ and is continuous in time. The associated
norm is defined to be kbkC.Œ0;T0�IL1.D;R3// D maxt2Œ0;T0�kb.x; t/kL1.D;R3/. The



8 Robert Lipton et al.

associated space of continuous functions in time taking values in L1.DIR3/

for which this norm is finite is denoted by C.Œ0; T0�IL1.D;R3//. The space of
functions twice differentiable in time taking values in L1.D;R3/ such that both
derivatives belong to C.Œ0; T0�IL1.D;R3// is written as C2.Œ0; T0�IL

1.D;R3//.
We now assert the existence and uniqueness for the solution of the initial value
problem.

Theorem 1 (Existence and uniqueness of the damage evolution). The initial
value problem given by (10) and (11) has a solution u.x; t/ such that for every
t 2 Œ0; T0�, u takes values in L1.D;R3/ and is the unique solution belonging to the
space C2.Œ0; T0�IL

1.D;R3//.
To prove the theorem, we will show

(1) The operator LT .u/.x; t/C LD.u/.x; t/ is a map from C.Œ0; T0�IL
1.D;R3//

into itself.
(2) The operator LT .u/.x; t/CLD.u/.x; t/ is Lipschitz continuous with respect to

the norm of C.Œ0; T0�IL1.D;R3//.

The theorem then follows from an application of the Banach fixed point theorem.
To establish properties (1) and (2), we state and prove the following lemmas for

the damage factors.

Lemma 1. Let HT .u/.y; x; t/ and HD.u/.x; t/ be defined as in (8) and (9). Then
for u 2 C.Œ0; T0�IL1.D;R3//, the mappings

.y; x/ 7! HT .u/.y; x; t/ W D �D ! R; x 7! HD.u/.x; t/ W D ! R (12)

are measurable for every t 2 Œ0; T0�, and the mappings

t 7! HT .u/.y; x; t/ W Œ0; T0�! R; t 7! HD.u/.x; t/ W Œ0; T0�! R (13)

are continuous for almost all .y; x/ and x, respectively. Moreover for almost all
.y; x/ 2 D �D and all t 2 Œ0; T0�, the map

u 7! HT .u/.y; x; t/ W C.Œ0; T0�IL
1.D;R3//! R (14)

is Lipschitz continuous, and for almost all x 2 D and all t 2 Œ0; T0�, the map

u 7! HD.u/.x; t/ W C.Œ0; T0�IL
1.D;R3//! R (15)

is Lipschitz continuous.

Proof. The measurability properties are immediate. In what follows, constants are
generic and apply to the context in which they are used. We establish continuity in
time for HD.u/. For Ot and t in Œ0; T0�, we have
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jHD.u/.x; Ot / �HD.u/.x; t/j

D jh

 Z Ot
0

j� .�.x; � I u// d�

!
� h

�Z t

0

j� .�.x; � I u// d�

�
j

� C1

Z max fOt ;tg

min fOt ;tg
j� .�.x; � I u//d�

� � C1

Z max fOt ;tg

min fOt ;tg
j�.x; � I u/jd�

� � `1C1C2jOt � t j2kukC.Œ0;T0�IL1.D;R3//:

(16)

The first inequality follows from the Lipschitz continuity of h, the second follows
from the growth condition on j� , and the third follows from (3).

We establish continuity in time for HT .u/. For Ot and t in Œ0; T0�, we have

jHT .u/.x; Ot / �HT .u/.x; t/j

D jh

 Z Ot
0

jS .S.y; x; � I u// d�

!
� h

�Z t

0

jS .S.y; x; � I u// d�

�
j

� C1

Z max fOt ;tg

min fOt ;tg
jS.S.y; x; � I u//d�

� � C1

Z max fOt ;tg

min fOt ;tg
jS.y; x; � I u/jd�

� � C1C2
jOt � t j

jy � xj
2kukC.Œ0;T0�IL1.D;R3//:

(17)

The first inequality follows from the Lipschitz continuity of h, the second follows
from the growth condition on jS , and the third follows from the definition of
strain (1).

To demonstrate Lipschitz continuity for HD.u/.x; t/, we write

jHD.u/.x; t// �HD.v/.x; t/j

D jh

�Z t

0

j� .�.x; � I u// d�

�
� h

�Z t

0

j� .�.x; � I v// d�

�
j

� C1j

Z t

0

.j� .�.x; � I u/ � j� .�.x; � I v// d� j

� C1C2

Z t

0

j�.x; � I u/ � �.x; � I v/j d�

� 2t`1C1C2ku � vkC.Œ0;t �IL1.D;R3//:

(18)
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The first inequality follows from the Lipschitz continuity of h, the second follows
from the Lipschitz continuity of j� , and the third follows from (3). The Lipschitz
continuity for HS.u/.y; x; t/ follows from similar arguments using the Lipschitz
continuity of h, jS , and (1), and we get

jHT .u/.y; x; t// �HT .v/.y; x; t/j

�
2tC1C2C3

jy � xj
ku � vkC.Œ0;t �IL1.D;R3//:

(19)

ut

Proof of Theorem 1. We establish (1) by first noting that

jLT .u/.x; t/C LD.u/.x; t/j � C

ı2
; (20)

where C is a constant. This estimate follows from the boundedness of f 0, g0,
HT .u/, and HD.u/ and the integrability of the ratios J ı.jy � xj/=jy � xj2,
J ı.jy�xj/=jy�xj3=2, and !ı.jy�xj/. Thus kLT .u/.x; t/CLD.u/.x; t/kL1.D;R3/
is uniformly bounded for all t 2 Œ0; T0�.

To complete the demonstration of (1), we point out that the force functions @Sf
and @�g are Lipschitz continuous in their arguments. The key features are given in
the following lemma.

Lemma 2. Given two functions v and w in L1.D;R3/, then

j@Sf .
p
jy � xjS.y; xI v// � @Sf .

p
jy � xjS.y; xIw//

j �
2Cp
jy � xj

kv � wkL1.D;R3/: (21)

and

j@�g.�.xI v// � @�g.�.xIw//j � 2`1Ckv � wkL1.D;R3/: (22)

Proof.

j@Sf .
p
jy � xjS.y; xI v// � @Sf .

p
jy � xjS.y; xIw//j

� C
p
jy � xjjS.y; xI v/ � S.y; xIw/j �

2Cp
jy � xj

kv � wkL1.D;R3//;
(23)

where the first inequality follows from the Lipschitz continuity of @Sf and the
second follows from the definition of S .
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For @�g, we have

j@�g.�.xI v// � @�g.�.xIw//j � C j�.xI v/ � �.xIw/j � 2`1C1kv � wkL1.D;R3//;
(24)

where the first inequality follows from the Lipschitz continuity of @�g and the
second follows from the definitions of � and S . ut

We have

jLT .u/.x; Ot / � LT .u/.x; t/j

�
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
j@Sf .

p
y � xS.y; x; Ot I u//

� @Sf .
p
y � xS.y; x; t I u//j dy

C
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
jHT .u/.y; x; Ot / �HT .u/.y; x; t/j dy: (25)

From the above, (19), and Lemma 2, we see that

kLT .u/.x; Ot / � LT .u/.x; t/kL1.D;R3/

�
`3C3

ı
ku.x; Ot / � u.x; t/kL1.D;R3/ C

`2� C1C2

ı
jOt � t j2kukC.Œ0;T0�IL1.D;R3//

(26)
and we see LT is well defined and maps C.Œ0; T0�IL1.D;R3// into itself.

We show the continuity in time for LD.u/.x; t/. Now we have

jLD.u/.x; Ot / � LD.u/.x; t/j

�
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@�g.�.y; Ot I u// � @�g.�.y; t I u//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jHD.u/.y; Ot / �HD.u/.y; t/j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@�g.�.x; Ot I u// � @�g.�.x; t I u//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jHD.u/.x; Ot / �HD.u/.x; t/j dy

(27)

and applying Lemma 2 and (18)–(27), we get the continuity

jLD.u/.x; Ot / � LD.u/.x; t/j � 4`21C1

ı2
ku.Ot ; x/ � u.t; x/kL1.D;R3/

C
� 4`21C1C2

ı2
jOt � t jkukC.Œ0;T0�IL1.D;R3/:

(28)
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We conclude that LD is well defined and maps C.Œ0; T0�IL1.D;R3// into itself
and item (1) is proved.

To show Lipschitz continuity, consider any two functions u and w belonging to
C.Œ0; T0�IL

1.D;R3//, t 2 Œ0; T0� to write

jLT .u/.x; t/C LD.u/.x; t/ � ŒLT .w/.x; t/C LD.w/.x; t/�j

�
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
j@Sf .

p
jy � xjS.y; x; t I u//

� @Sf .
p
jy � xjS.y; x; t Iw//j dy

C
2

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
jHT .u/.y; x; t/ �HT .w/.y; x; t/j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@�g.�.y; t I u// � @�g.�.y; t Iw//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jHD.u/.y; t/ �HD.w/.y; t/j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
j@�g.�.x; t I u// � @�g.�.x; t Iw//j dy

C
1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
jHD.u/.x; t/ �HD.w/.x; t/j dy:

(29)

Applying (18) and (19)–(29) delivers the estimate

kLT .u/.x; t/C LD.u/.x; t/ � ŒLT .w/.x; t/C LD.w/.x; t/�kC.Œ0;t �IL1.D;R3//

�
C1 C tC2

ı2
ku � wkC.Œ0;t �IL1.D;R3//;

(30)
where C1 and C2 are constants not depending on time u or w. For T0 > t , we can
choose a constant L > .C1 C T0C2/=ı2 and

kLT .u/.x; t/C LD.u/.x; t/ � ŒLT .w/.x; t/C LD.w/.x; t/�kC.Œ0;t �IL1.D;R3//
� Lku � wkC.Œ0;t �IL1.D;R3//; for all t 2 Œ0; T0�:

(31)
This proves the Lipschitz continuity, and item (2) of the theorem is proved. Note that
u.�/ D w.�/ for all � 2 Œ0; t � implies LT .u/.x; t/CLD.u/.x; t/ D ŒLT .w/.x; t/C
LD.w/.x; t/� and LT .u/.x; t/C LD.u/.x; t/ is a Volterra operator.

We write evolutions u.x; t/ belonging to C.Œ0; t �IL1.D;R3// as u.t/ and
.V u/.t/ is the sum
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.V u/.t/ D LT .u/.t/C LD.u/.t/: (32)

We seek the unique fixed point of u.t/D.Iu/.t/where I mapsC.Œ0; t �IL1.D;R3//
into itself and is defined by

.Iu/.t/ Du0 C tv0 C
Z t

0

.t � �/.V u/.�/C b.�/ d�: (33)

This problem is equivalent to finding the unique solution of the initial value problem
given by (10) and (11). We now show that I is a contraction map, and by virtue
of the Banach fixed point theorem, we can assert the existence of a fixed point in
C.Œ0; t �IL1.D;R3//. To see that I is a contraction map on C.Œ0; t �IL1.D;R3//,
we introduce the equivalent norm

jjjujjjC.Œ0;t �IL1.D;R3// D max
t2Œ0;T0�

fe�2LT0tkukL1.D;R3/g; (34)

and show I is a contraction map with respect to this norm. We apply (30) to find for
t 2 Œ0; T0� that

k.Iu/.t/ � .Iw/.t/kL1.D;R3/�
Z t

0

.t � �/k.V u/.�/ � .V w/.�/kL1.D;R3/ d�

�LT0

Z t

0

ku � wkC.Œ0;��IL1.D;R3// d�

�LT0

Z t

0

max
s2Œ0;��
fku.s/�w.s/kL1.D;R3/e

�2LT0sge2LT0�d�

�
e2LT0t � 1

2
jjju � wjjjC.Œ0;T0�IL1.D;R3//;

(35)
and we conclude

jjj.Iu/.t/ � .Iw/.t/jjjC.Œ0;T0�IL1.D;R3// �
1

2
jjju � wjjjC.Œ0;T0�IL1.D;R3//; (36)

so I is a contraction map. From the Banach fixed point theorem, there is a unique
fixed point u.t/ belonging to C.Œ0; T0�IL1.D;R3//, and it is evident from (33)
that u.t/ also belongs to C2.Œ0; T0�IL

1.D;R3//. This concludes the proof of
Theorem 1.
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Energy Balance

The evolution is shown to exhibit a balance of energy at all times. In this section,
we describe the potential and the energy dissipation rate and show energy balance
in rate form. The potential energy at time t for the evolution is denoted by U.t/ and
is given by

U.t/ D
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
HT .u/.y; x; t/f .

p
jy�xjS.y; x; t I u// dydx

C

Z
D

1

ı2
HD.u/.x; t/g.�.x; t I u// dx:

(37)
The energy dissipation rate @tR.t/ is

@tR.t/ D�
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy�xj/

ı
@tH

T.u/.y; x; t/f.
p
jy�xjS.y; x; t I u// dydx

�

Z
D

1

ı2
@tH

D.u/.x; t/g.�.x; t I u// dx:

(38)
The derivatives @tHT .u/.y; x; t/ and @tHD.u/.x; t/ are easily seen to be nonposi-
tive, and the dissipation rate satisfies @tR.t/ � 0. The kinetic energy is

K.t/ D �

Z
D

j@tu.x; t/j2

2
dx: (39)

The energy balance in rate form is given in the following theorem.

Theorem 2. The rate form of energy balance for the damage-fracture evolution is
given by

@tK.t/C @tU .t/C @tR.t/ D

Z
D

b.x; t/ � @tu.x; t/ dx: (40)

Proof of Theorem 2. We multiply both sides of the evolution Eq. (10) by @tu.x; t/
and integrate over D to get

�

Z
D

@2t u.x; t/ � @tu.x; t/ dx D
Z
D

LT .u/.x; t/ � @tu.x; t/ dx (41)

C

Z
D

LD.u/.x; t/ � @tu.x; t/ dx

C

Z
D

b.x; t/ � @tu.x; t/ dx: (42)
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The term on the left side of the equation is immediately recognized as @tK.t/.
The first and second terms on the right-hand side of the equation are given in the
following lemma.

Lemma 3. One has the following integration by parts formulas given by

Z
D

LT .u/.x; t/ � @tu.x; t/ dx

D �
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
HT .u/.y; x; t/@tf .

p
jy�xjS.y; x; t I u// dydx:

(43)
and
Z
D

LD.u/.x; t/ � @tu.x; t/ dx D �
Z
D

1

ı2
HD.u/.x; t/@tg.�.x; t I u// dx: (44)

Now note that

@tU .t/C @tR.t/

D
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
HT .u/.y; x; t/@tf .

p
jy � xjS.y; x; t I u// dydx

C

Z
D

1

ı2
HD.u/.x; t/@tg.�.x; t I u// dx;

(45)
and the energy balance theorem follows from (41) and (45).

We conclude by proving the integration by parts Lemma 3. We start by
proving (44). We expand @tg.�.x; t//

@tg.�.x; t I u//

D @�g.�.x; t I u//
1

Vı

Z
D\Bı.x/

!ı.jy � xj/jy � xj
@tu.y/ � @tu.x/

jy � xj
� ey�x dy

(46)
and write

�

Z
D

1

ı2
HD.u/.x; t/@tg.�.x; t I u// dx D A.t/C B.t/; (47)

where

A.t/D�

Z
D

1

ı2
HD.u/.x; t/@�g.�.x; t I u//

1

Vı

Z
D\Bı.x/

!ı.jy�xj/@tu.y/ � ey�x dydx

(48)
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and

B.t/D

Z
D

1

ı2
HD.u/.x; t/@�g.�.x; t I u//

1

Vı

Z
D\Bı.x/

!ı.jy�xj/@tu.x/�ey�x dydx:

(49)
Next introduce the characteristic function of D denoted by �D.x/ taking the value
one inside D and zero outside, and together with the properties of !ı.jy � xj/, we
rewrite A.t/ as

A.t/ D�

Z
R3�R3

�D.x/�D.y/!
ı.jy � xj/

1

ı2
HD.u/.x; t/@�g.�.x; t I u//

1

Vı
@tu.y/ � ey�x dydxI (50)

we switch the order of integration and note �ey�x D ex�y to obtain

A.t/D

Z
D

1

Vı

Z
D.x/\Bı.y/

!ı.jy � xj/

ı2
HD.u/.x; t/@�g.�.x; t I u//ex�y dx�@tu.y/dy:

(51)
We can move @tu.x/ outside the inner integral, regroup factors, and write B.t/ as

B.t/D

Z
D

1

Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
HD.u/.x; t/@�g.�.x; t I u//ey�x dy �@tu.x/dx:

(52)
We rename the inner variable of integration y and the outer variable x in (51) and
add equations (51) and (52) to get

A.t/C B.t/ D

Z
D

LD.u/.x; t/ � @tu.x; t/ dx (53)

and (44) is proved.
The steps used to prove (43) are similar to the proof of (44), so we provide only

the key points of its derivation below. We expand @tf .
p
jy � xjS/ to get

@tf .
p
jy � xjS.y; x; t I u//

D @Sf .
p
jy � xjS.y; x; t I u//

@tu.y/ � @tu.x/

jy � xj
� ey�x;

(54)

and write

�
2

Vı

Z
D

Z
D\Bı.x/

J ı.jy � xj/

ı
HT .u/.y; x; t/@tf .

p
jy � xjS.y; x; t I u// dydx

D A.t/C B.t/; (55)
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where

A.t/ D

D �

Z
D

1

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
HT .u/.y; x; t/@S

f .
p
jy � xjS.y; x; t I u//@tu.y/ � ey�x dydx (56)

and

B.t/ D

D

Z
D

1

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
HT .u/.y; x; t/@S

f .
p
jy � xjS.y; x; t I u//@tu.x/ � ey�x dydx: (57)

We note that S.y; x; t I u/ D S.x; y; t I u/ and HT .u/.y; x; t/ D HT .u/.x; y; t/,
and proceeding as in the proof of (44), we change the order of integration in (56)
noting that �ey�x D ex�y to get

A.t/ D

D

Z
D

1

Vı

Z
D\Bı.y/

J ı.jy � xj/

ıjy � xj
HT .u/.x; y; t/@S

f .
p
jy � xjS.x; y; t I u///ex�y dx � @tu.y/ dy: (58)

Taking @tu.x/ outside the inner integral in (57) gives

B.t/ D

D

Z
D

1

Vı

Z
D\Bı.x/

J ı.jy � xj/

ıjy � xj
HT .u/.y; x; t/@S

f .
p
jy � xjS.y; x; t I u//ey�x dy � @tu.x/ dx: (59)

We conclude noting that now

A.t/C B.t/ D

Z
D

LT .u/.x; t/ � @tu.x; t/ dx; (60)

and (43) is proved.
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Fig. 5 Plot of h.x/ with
a D 2

Explicit Damage Models, Cyclic Loading, and Strain to Failure

In this section, we provide concrete examples of the damage functions
HT .u/.y; x; t/ and HD.u/.x; t/. We provide an example of cyclic loading and
the associated degradation in the nonlocal force-strain law as well as the strain
to failure curve for monotonically increasing strains. In this work, both damage
functions HT and HD are given in terms of the function h. Here we give an
example of h.x/ W R! R

C as follows

h.x/ D

8̂
<̂
ˆ̂:

Nh.x=xc/; for x 2 .0; xc/;

1; for x � 0;

0; for x � xc:

(61)

with Nh W Œ0; 1�! R
C is defined as

Nh.x/ D expŒ1 �
1

1 � .x=xc/a
� (62)

where a > 1 is fixed. Clearly, Nh.0/ D 1, Nh.xc/ D 0 (see Fig. 5).
For a given critical strain Sc > 0, we define the threshold function for tensile

strain jS.x/ as follows

jS.x/ WD

(
Nj .x=Sc/; 8x 2 ŒSc;1/;

0; otherwise:
(63)

where Nj W Œ1;1/! R
C is given by
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Fig. 6 Plot of jS .x/ with
a D 4; b D 5 and Sc D 2

Fig. 7 Plot of j� .x/ with
a D 4; b D 5, �Cc D 2, and
��C D 3

Nj .x/ D
.x � 1/a

1C xb
(64)

with a > 1 and b � a� 1 fixed. Note that jS.1/ D 0. Here the condition b � a� 1
insures the existence of a constant � > 0 for which

jS.x/ � � jxj; 8x 2 R (65)

(see Fig. 6).
For a given critical hydrostatic strains ��c < 0 < �Cc , we define the threshold

function j� .x/ as

j� .x/ WD

8̂
<̂
ˆ̂:

Nj .x=�Cc /; 8x 2 Œ�Cc ;1/;

Nj .�x=��c /; 8x 2 .�1;���c �;

0; otherwise;

(66)
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Fig. 8 (a) Strain profile. (b)
Damage function plot
corresponding to strain
profile

where Nj .x/ is defined by (64), and we plot j� in Fig. 7. We summarize noting that
an explicit form for HT .u/.y; x; t/ is obtained by using (61) and (63) in (8) and an
explicit form for HD.u/.x; t/ is obtained by using (61) and (66) in (9).

We first provide an example of cyclic damage incurred by a periodically varying
tensile strain. Let x; y be two fixed material points with jy � xj < ı, and let
S.y; x; t I u/ D S.t/ correspond to a temporally periodic strain (see Fig. 8a). Here
S.t/ periodically takes excursions above the critical strain Sc . During the first
period, we have

S.t/ D

(
t; 8t 2 Œ0; SC C ��;

2.SC C �/ � t 8t 2 .SC C �; 2.Sc C �/�

and S.t/ is extended to R
C by periodicity (see Fig. 8a). For this damage model, we

let 	 be the area under the curve jS.x/ from x D Sc to x D Sc C �. It is given by

	 D

Z ScC�

Sc

jS .x/dx D

Z ScC�

Sc

jS .S.t//dt:

From symmetry, the area under the curve jS.x/ under unloading from Sc C � to Sc
is also 	. The corresponding damage function HT .u/.y; x; t/ is plotted in Fig. 8b.

In Fig. 9, we plot the strain-force relation where S is the abscissa and the tensile
force given by HT ..u/.y; x; t//@Sf .

p
jy � xjS.y; x; t I u/// is the ordinate. Here

the damage factor HT .u/.y; x; t/ drops in value with each cycle of strain loading.
After each cycle, the slope (elasticity) in the linear and recoverable part of the force-
strain curve decreases due to damage. The force needed to soften the material is the
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Fig. 9 Cyclic strain vs Force
plot. The initial stiffness is ˛.
Hysteresis is evident in this
model

strength, and it is clear from the model that the strength decreases after each cycle
due to damage.

Application of this rigorously established model to fatigue is a topic of future
research but beyond the scope of this article. We note that fatigue models based on
peridynamic bond softening are introduced in Oterkus (2010) and with fatigue crack
nucleation in the context of the Paris law in Silling and Askari (2014).

The next example is strain to failure for a monotonically increasing strain. Here
we let
S.y; x; t I u/ D S.t/ D t and plot the corresponding force-strain curve in Fig. 10.
We see that the force-strain relation is initially linear until the strain exceeds Sc ;
the force then reaches its maximum and subsequently softens to failure. At S� �

0:55025, we have
R S�
0
jS .t/dt D xc and HT D 0. Here we take ˛ D 1.

Numerical Results

In this section, we present numerical results. Explicit expressions of the functions
described in e the previous section are used in simulating the problem. The damage
function h is defined similar to Eq. 61 with exponents a D 1:01 and xc D 0:2. The
function jS is given by Eq. 63 with a D 5; b D 5; Sc D 0:01. The function j�
is given by Eq. 66 with a D 4; b D 5; �Cc D 0:3; ��c D 0:4. Nonlinear potential
function f is given by f .r/ D ˛r2 for r < r1 and f .r/ D r for r > r2. We let
˛ D 10 and let r1 D r2 D 0:05. Similarly, the nonlinear potential function g is
given by g.r/ D ˇr2 for r < r�1 and g.r/ D r for r > r�2 . We let ˇ D 1 and let
r�1 D r

�
2 D 0:05. The influence function is given by J ı.jy � xj/ D !ı.jy � xj/ D

1 � jy�xj
ı

for 0 � jy � xj � ı and J ı.jy � xj/ D !ı.jy � xj/ D 0 otherwise.
We consider �Cc and ��c sufficiently high so that we only see damage due to tensile
forces and not hydrostatic forces.
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Fig. 10 Strain vs force plot where S.t/ D t . HT .S.t// begins to drop at Sc D 0:1 and S� �
0:55025

In both numerical problems, we consider the material domain D D Œ0; 1�2. We
also keep the initial condition fixed to u0 D 0 and v0 D 0. Further, we apply no
body force, i.e., b D 0. However we will consider boundary loading that is periodic
in time. Let x D .x1; x2/ where x1 corresponds to the component along horizontal
axis and x2 corresponds to the component along vertical axis.

Periodic Loading

We apply boundary condition u D 0 on edge x1 D 0, x1 D 1, and x2 D 0. We
consider function Nu of form

Nu.t/ D

(
˛bct; 8t 2 Œ0; Tbc�;

˛bcTbc � t 8t 2 .Tbc; 2Tbc�
(67)

and periodically extend the function for any time t . For point x on edge x2 D 1,
we apply u.t; x/ D .u1.t; x/; u2.t; x// D .0; Nu.t//. We consider ˛bc D 0:01 and
Tbc D 0:216.

To numerically approximate the evolution equation, we discretize the domain D
uniformly with mesh size h D ı=5, where ı D 0:15 in this problem. For time
discretization, we consider the velocity Verlet scheme for second order in time
differential equation and a midpoint quadrature for the spatial discretization. Final
time is T D 1:2 and size of time step is 
t D 10�5.

To obtain the hysteresis plot, we chose bonds as shown in Fig. 11. We track the
bond strain S.y; x; t I u/ and other relevant quantities. While we track all the bonds
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Fig. 11 Discretization of
material domain D D Œ0; 1�2.
During simulation bond
between red and black
material point is tracked to
obtain the strain vs stress
profile and other information

0.0

0.0

0.2

0.4

0.6

0.5 1.0

Fig. 12 Time vs Strain S.y; x; t I u/ plot

shown in Fig. 11, we only provide plots for the bond which is near to middle top
edge. For the bonds in either left and right of the bond at middle top edge, the
response is the same. For the bond inside the material, the strains are never greater
than Sc , and therefore it experiences no damage.

Figures 12 and 13 show the strain of the bond and damage HT of the bond as
function of time. It is quite similar to the plots shown in Figs. 8 and 9. In Fig. 14,
we show the strain vs force plot. Red line shows response of bond when damage
function is taken to be unity. We further note that the damage is defined for positive
strains above critical strain.

Shear Loading

We apply u D 0 on bottom edge and keep left and right edge free. On top, we apply
u.t; x/ D .u1.t; x/; u2.t; x// D .�tx2; 0/. We chose � D 0:0001 and simulate the
problem up to time T D 750. Time step is 
t D 10�5.
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Fig. 13 Time vs Damage function HT ..u/.y; x; t// plot

–0.08

–0.10 –0.05 0.00 0.05

–0.06

–0.04

–0.02

0.00

0.02

0.04

0.06

0.08

Fig. 14 Strain S.y; x; t I u/ vs Stress HT ..u/.y; x; t//@Sf .
p
jy � xjS.y; x; t I u/// plot for the

bond near middle top edge. Red color corresponds to @Sf .
p
jy � xjS.y; x; t I u///
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Fig. 15 Each point in figure
shows the discretized mesh
node. Strength of color shows
the damage � experienced by
the mesh node. Box shows
reference material domain
Œ0; 1�2

We choose the size of horizon to be ı D 0:05 and mesh size h D ı=5. As noted
in the beginning of the section that we choose hydrostatic parameters large enough
such that the damage is only due to the tensile interaction between material points.
For tensile interaction, the extent of damage experienced by a material is defined as

�.t; xI u/ D 1 �

R
D\Bı.x/

HT .u/.y; x; t/dyR
D\Bı.x/

dy
: (68)

Clearly, if all bonds in a horizon of material point x suffer no damage, then � will
be 0. As the damage of bonds increases, � also increases. In Fig. 15, we show � at
final time t D 750. As we can see, the damage is along the diagonal of square.

Linear Elastic Operators in the Small Horizon Limit

In this section, we consider smooth evolutions u in space and show that away from
damage set, the operators LT C LD acting on u converge to the operator of linear
elasticity in the limit of vanishing nonlocality. We denote the damage set by QD and
consider any open undamaged setD0 interior toD with its boundary a finite distance
away from the boundary of D and the damage set QD. In what follows, we suppose
that the nonlocal horizon ı is smaller than the distance separating the boundary of
D0 from the boundaries of D and QD.

Theorem 3. Convergence to linear elastic operators. Suppose that u.x; t/ 2
C2.Œ0; T0�; C

3.D;R3// and no damage, i.e., HT .y; x; t/ D 1 and HD.x; t/ D 1,
for every x 2 D0 � D n QD, then there is a constant C > 0 independent of nonlocal
horizon ı such that for every .x; t/ in D0 � Œ0; T0�, one has



26 Robert Lipton et al.

jLT .u.t//C LD.u.t// � r � C E.u.t//j < Cı; (69)

where the the elastic strain is E.u/ D .ru C .ru/T /=2 and the elastic tensor is
isotropic and given by

Cijkl D 2�

�
ıikıjl C ıil ıjk

2

�
C ıij ıkl ; (70)

with shear modulus � and Lamé coefficient  given by

�D
f 00.0/

10

Z 1

0

r3J .r/ dr and Dg00.0/

�Z 1

0

r3J .r/ dr

�2
C
f 00.0/

10

Z 1

0

r3J .r/ dr:

(71)
The numbers f 00.0/ D ˛ and g00.0/ D ˇ can be chosen independently and can be
any pair of real numbers such that C is positive definite.

Proof. We start by showing

jLT .u.t// � f
00.0/

2!3

Z
B1.0/

ej�jJ .j�j/ei ej ek d�@
2
jkui .x/j < Cı; (72)

where !3 D 4�=3 and e D ey�x are unit vectors on the sphere; here
repeated indices indicate summation. To see this, recall the formula for LT .u/
and write @Sf .

p
jy � xjS/ D f 0.

p
jy � xjS/

p
jy � xj. Now Taylor expand

f 0..
p
jy � xjS/ in

p
jy � xjS , and Taylor expand u.y/ about x, denoting ey�x by

e to find that all odd terms in e integrate to zero and

jLT .u.t//l �
2

Vı

Z
Bı.x/

J ı.jy � xj/

ıjy � xj

f 00.0/

4
jy � xj2@2jkui .x/ei ej ekel ; dyj

< Cı; l D 1; 2; 3: (73)

On changing variables � D .y � x/=ı, we recover (72). Now we show

jLD.u.t//k �
1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
g00.0/

!3

Z
B1.0/

j�j!.j�j/ekel d�@
2
lj ui .x/j

< Cı; k D 1; 2; 3: (74)

We note for x 2 D0 that D \ Bı.x/ D Bı.x/ and the integrand in the second term
of (6) is odd and the integral vanishes. For the first term in (6), we Taylor expand
@�g.�/ about � D 0 and Taylor expand u.z/ about y inside �.y; t/ noting that terms
odd in e D ez�y integrate to zero to get
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j@�g.�.y; t// � g
00.0/

1

Vı

Z
Bı.y/

!ı.jz � yj/jz � yj@j ui .y/ei ej d zj < Cı3: (75)

Now substitution for the approximation to @�g.�.y; t/ in the definition of LD gives

ˇ̌
LD.u/

�
1

Vı

Z
Bı.x/

!ı.jy � xj/

ı2
ey�x

1

Vı

Z
Bı.y/

!ı.jz�yj/jz�yjg00.0/@j ui .y/ei ej d z dy

ˇ̌
ˇ̌<Cı:

(76)
We Taylor expand @j ui .y/ about x, note that odd terms involving tensor products
of ey�x vanish when integrated with respect to y in Bı.x/, and we obtain (74).

We now calculate as in (Lipton 2016, equation (6.64)) to find that

f 00.0/

2!3

Z
B1.0/

j�jJ .j�j/ei ej ekel d�@
2
jkui .x/

D

�
2�1

�
ıikıjl C ıil ıjk

2

�
C 1ıij ıkl

�
@2jkui .x/; (77)

where

�1 D 1 D
f 00.0/

10

Z 1

0

r3J .r/ dr: (78)

Next observe that a straight forward calculation gives

1

!3

Z
B1.0/

j�j!.j�j/ei ej d� D ıij

Z 1

0

r3!.r/ dr; (79)

and we deduce that

1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
g00.0/

!3

Z
B1.0/

j�j!.j�j/ekel d�@
2
lj ui .x/

D g00.0/

�Z 1

0

r3!.r/ dr

�2
ıij ıkl@

2
lj ui .x/:

(80)

Theorem 3 follows on adding (77) and (80) ut

Conclusions

We have introduced a simple nonlocal model for free damage propagation in solids.
In this model, there is only one equation, and it describes the dynamics of the
displacement using Newton’s law F D ma. The damage is a consequence of
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displacement history and diminishes the force-strain law as damage accumulates.
The modeling allows for both cyclic damage or damage due to abrupt loading.
The damage is irreversible, and the damage set grows with time. The dissipation
energy due to damage together with the kinetic and potential energy satisfies energy
balance at every instant of the evolution. Future work will address the question
of localization of damage using this model. We believe that if the loading is such
that large monotonically increasing strains are generated, then damage localization
based on material softening and inertia could be anticipated.

In this treatment, we have considered dynamic problems only. For this case, we
have shown uniqueness for the model. The analysis of this model in the absence of
inertial forces leads to the quasi-static case where the effects of inertia are absent
but memory of the load history is still present. Future work aims to explore this
model for this case and understand regimes of body force specimen geometry and
boundary loads for which there is loss of uniqueness and associated instability. Such
nonuniqueness is well known for quasi-static gradient damage models (Pham and
Marigo, 2013).
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