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Abstract

We introduce a regularized model for free fracture propagation based on nonlocal
potentials. We work within the small deformation setting, and the model is
developed within a state-based peridynamic formulation. At each instant of the
evolution, we identify the softening zone where strains lie above the strength
of the material. We show that deformation discontinuities associated with flaws
larger than the length scale of nonlocality ı can become unstable and grow. An
explicit inequality is found that shows that the volume of the softening zone
goes to zero linearly with the length scale of nonlocal interaction. This scaling
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is consistent with the notion that a softening zone of width proportional to ı
converges to a sharp fracture set as the length scale of nonlocal interaction
goes to zero. Here the softening zone is interpreted as a regularization of the
crack network. Inside quiescent regions with no cracks or softening, the nonlocal
operator converges to the local elastic operator at a rate proportional to the radius
of nonlocal interaction. This model is designed to be calibrated to measured
values of critical energy release rate, shear modulus, and bulk modulus of
material samples. For this model one is not restricted to Poisson ratios of 1=4 and
can choose the potentials so that small strain behavior is specified by the isotropic
elasticity tensor for any material with prescribed shear and Lamé moduli.

Keywords
Free fracture model · Nonlocal interactions · Double-well potentials ·
State-based peridynamics

Introduction

We address the problem of free crack propagation in homogeneous materials. The
crack path is not known a priori and is found as part of the problem solution.
Our approach is to use a nonlocal formulation based on double-well potentials.
We will work within the small deformation setting, and the model is developed
within a state-based peridynamic formulation. Peridynamics (Silling, 2000; Silling
et al., 2007) is a nonlocal formulation of continuum mechanics expressed in terms
of displacement differences as opposed to spatial derivatives of the displacement
field. These features provide the ability to simultaneously simulate both smooth
displacements and defect evolution. Computational methods based on peridynamic
modeling exhibit formation and evolution of sharp features associated with phase
transformation (see Dayal and Bhattacharya 2006) and fracture (see Silling and
Lehoucq 2008; Silling et al. 2010; Foster et al. 2011; Agwai et al. 2011; Du et al.
2013; Lipton et al. 2016; Bobaru and Hu 2012; Ha and Bobaru 2010; Silling and
Bobaru 2005; Weckner and Abeyaratne 2005; Gerstle et al. 2007; Silling and Askari
2005). A recent review of the state of the art can be found in Bobaru et al. (2016).

In this work we are motivated by the recent models proposed and studied in
Lipton (2014, 2016), and Lipton et al. (2016). Calibration has been investigated
in Diehl et al. (2016). These models are defined by double-well two-point strain
potentials. Here one potential well is centered at the origin and associated with
elastic response, while the other well is at infinity and associated with surface
energy. The rationale for studying these models is that they are shown to be well
posed over the class of square-integrable non-smooth displacements, and in the
limit of vanishing nonlocality, the dynamics localize and recover features of sharp
fracture propagation (see Lipton 2014, 2016). In this work we extend this modeling
approach to the state-based formulation. Our work is further motivated by the recent
numerical-experimental study carried out in Diehl et al. (2016) demonstrating that
the bond-based model is unable to capture the Poisson ratio for a sample of PMMA
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at room temperature. Here we develop a double-well state-based potential for which
the Poisson ratio is no longer constrained to be 1=4. We show that for this model
we can choose the potentials so that the small strain behavior is specified by the
isotropic elasticity tensor for any material with prescribed shear and Lamé moduli.

Nonlocal Dynamics

We formulate the nonlocal dynamics. Here we will assume displacements u are
small (infinitesimal) relative to the size of the three-dimensional bodyD. The tensile
strain is written as S D S.y; x; t I u/ and given by

S.y; x; t I u/ D
u.t; y/ � u.t; x/

jy � xj
� ey�x; ey�x D

y � x

jy � xj
; (1)

where ey�x is a unit direction vector and � is the dot product. It is evident that
S.y; x; t I u/ is the tensile strain along the direction ey�x . We introduce the influence
function !ı.jy � xj/ such that !ı is nonzero for jy � xj < ı, zero outside. Here we
will take !ı.jy � xj/ D !.jy � xj=ı/ with !.r/ D 0 for r > 1 nonnegative for
r < 1 and ! is bounded.

The spherical or hydrostatic strain at x is given by

�.x; t I u/ D
1

Vı

Z
D\Bı.x/

!ı.jy � xj/S.y; x; t I u/jy � xj dy; (2)

where Vı is the volume of the ball Bı.x/ of radius ı centered at x. Here we have
employed the normalization jy � xj=ı so that this factor takes values in the interval
from 0 to 1.

Motivated by potentials of Lennard-Jones type, we define the force potential for
tensile strain given by

Wı.S.y; x; t I u// D ˛!ı.jy � xj/
1

ıjy � xj
f .
p
jy � xjS.y; x; t I u// (3)

and the potential for hydrostatic strain

Vı.�.x; t I u// D ˇg.�.x; t I u//

ı2
(4)

where Wı.S.y; x; t I u// is the pairwise force potential per unit length between two
points x and y and Vı.�.x; t I u// is the hydrostatic force potential density at x. They
are described in terms of their potential functions f and g (see Fig. 1). These two
potentials are double-well potentials that are chosen so that the associated forces
acting between material points x and y are initially elastic and then soften and
decay to zero as the strain between points increases (see Fig. 2 for the tensile force).
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Fig. 1 Potential function
f .r/ for tensile force and
potential function g.r/ for
hydrostatic force
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Fig. 2 Cohesive tensile force
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This force is negative for compression, and a similar force hydrostatic strain law
follows from the potential for hydrostatic strain. The first well for Wı.S.y; x; t I u//
and Vı.�.x; t I u// is at zero tensile and hydrostatic strain, respectively. With this in
mind, we make the choice

f .0/ D f 0.0/ D g.0/ D g0.0/: (5)

The second well is at infinite tensile and hydrostatic strain and is characterized
by the horizontal asymptotes limS!1 f .S/ D f1 and lim�!1 g.�/ D g1,
respectively (see Fig. 1).



Dynamic Brittle Fracture from Nonlocal Double-Well Potentials: A State-Based Model 5

The critical tensile strain SCc > 0 for which the force begins to soften is given
by the inflection point rC1 > 0 of f and is

SCc D
rC1p
jy � xj

: (6)

The critical negative tensile strain is chosen much larger in magnitude than SCc and
is

S�c D
r�1p
jy � xj

; (7)

with r�1 < 0 and rC1 << jr�1 j. The critical value 0 < �Cc where the force begins to
soften under positive hydrostatic strain for �.x; t I u/ > �Cc is given by the inflection
point rC2 of g and is

�Cc D r
C
2 : (8)

The critical compressive hydrostatic strain where the force begins to soften for
negative hydrostatic strain is chosen much larger in magnitude than �Cc and is

��c D r
�
2 ; (9)

with r�2 < 0 and rC2 < jr�2 j. For this model we suppose the inflection points for g
and f satisfy the ordering

r�2 < r
�
1 < 0 < r

C
1 < rC2 : (10)

This ordering is chosen to illustrate ideas for a material that is weaker in shear strain
than hydrostatic strain. With this choice and the appropriate influence function !ı ,
if the hydrostatic stress is positive at x and is above the critical value �Cc , then there
are points y in the peridynamic neighborhood for which the tensile stress between
x and y is above SCc . This aspect of the model is established and addressed in
section “Control of the Softening Zone”.

The potential energy is given by

PDı.u/ D
1

Vı

Z
D

Z
D\Bı.x/

jy � xjWı.S.y; x; t I u// dydx

C

Z
D

Vı.�.x; t I u// dx: (11)

The material is assumed homogeneous, and the density is given by �, and the applied
body force is denoted by b.x; t/. We define the Lagrangian
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L.u; @tu; t / D
�

2
jjPujj2

L2.DIR3/
� PDı.u/C

Z
D

b � udx;

here Pu is the velocity given by the time derivative of u, and kPukL2.DIR3/ denotes the
L2 norm of the vector field Pu W D ! R

3. Applying the principle of least action
together with a straightforward calculation gives the nonlocal dynamics

� Ru.x; t/ D LT .u/.x; t/C LD.u/.x; t/C b.x; t/; for x 2 D; (12)

where

LT .u/.x; t/ D 2˛

Vı

Z
D\Bı.x/

!ı.jy � xj/

ıjy � xj
@Sf .

p
jy � xjS.y; x; t I u//ey�x dy;

(13)

and

LD.u/.x; t/D ˇ
Vı

Z
D\Bı.x/

!ı.jy � xj/

ı2
Œ@�g.�.y; t I u//C@�g.�.x; t I u//� ey�x dy:

(14)

The dynamics is complemented with the initial data

u.x; 0/ D u0.x/; @tu.x; 0/ D v0.x/: (15)

It is readily verified that this is an ordinary state-based peridynamic model. The
forces are defined by the derivatives of the potential functions, and the derivative
associated with the tensile strain potential is sketched in Fig. 2. We show in the next
section that this initial value problem is well posed.

Existence of Solutions

The regularity and existence of the solution depends on the regularity of the initial
data and body force. In this work we choose a general class of body forces and initial
conditions. The initial displacement u0 and velocity v0 are chosen to be integrable
and belonging to L1.DIR3/. The body force b.x; t/ is chosen such that for every
t 2 Œ0; T0�, b takes values in L1.D;R3/ and is continuous in time. The associated
norm is defined to be kbkC.Œ0;T0�IL1.D;R3// D maxt2Œ0;T0�kb.x; t/kL1.D;R3/. The
space of continuous functions in time taking values in L1.DIR3/ for which this
norm is finite is denoted by C.Œ0; T0�IL1.D;R3//. The space of functions twice
differentiable in time taking values in L1.D;R3/ such that both derivatives belong
to C.Œ0; T0�IL1.D;R3// is written as C2.Œ0; T0�IL

1.D;R3//.
We will establish existence and uniqueness for the evolution by writing the

second-order ODE as an equivalent first-order system. The nonlocal dynamics (12)
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can be written as a first-order system. Set y D .y1; y2/ where y1 D u and y2 D ut .

Now, set F ı.y; t/ D
�
F1.y; t/; F2.y; t/

�T
where:

F1.y; t/ D y2

F2.y; t/ D LT .y1/.t/C LD.y1/.t/C b.t/
(16)

And the initial value problem is given by the equivalent first-order system

d

dt
yı D F ı.yı; t/

y.0/ D .y1.0/; y2.0// D .u0; v0/

(17)

The existence of a unique solution to the initial value problem is asserted in the
following theorem.

Theorem 1. For a body force b.t; x/ in C1
�
Œ0; T �IL1.D;R3/

�
and initial data

y1.0/ and y2.0/ in L10 .DIR
3/ � L10 .DIR

3/, there exists a unique solution y.t/
such that y1 D u is in

C2
�
Œ0; T �IL1.D;R3/

�
for the dynamics described by (17) with initial data in

L1..DIR3/ � L1.DIR3/ and body force b.t; x/ in C1
�
Œ0; T �IL1.D;R3/

�
.

Proof. We will show that the model is Lipschitz continuous and then apply the
theory of ODE in Banach spaces, e.g., Driver (2003), to guarantee the existence
of a unique solution. It is sufficient to show that

jjLT .u/.x; t/CLD.u/.x; t/�.LT .v/.x; t/CLD.v/.x; t//jjL1.D/ � C jju�vjjL1.D/
(18)

For ease of notation, we introduce the following vectors

EU D u.y/ � u.x/;

EV D v.y/ � v.x/:

We write

LT .u/.x; t/C LD.u/.x; t/ � .LT .v/.x; t/C LD.v/.x; t// D I1 C I2: (19)
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Here

I1 D
2˛

ıVı

Z
D\Bı.x/

!ı.jy � xj/p
jy � xj

n
f 0.

p
jy � xjS.y; x; t I u//

� f 0.
p
jy � xjS.y; x; t I v//

o
e.y�x/dy

I2 D
ˇ

ı2Vı

Z
D\Bı.x/

!ı.jy � xj/
�
g0.�.y; t I u//C g0.�.x; t I u//

� .g0.�.y; t I v//C g0.�.x; t I v///
�
e.y�x/dy (20)

Since f 00 is bounded a straightforward calculation gives:

jf 0.
p
jy � xjS.y; x; t I u// � f 0.

p
jy � xjS.y; x; t I v//

�
p
jy � xj sup

s2R

fjf 00.s/jgjS.y; x; t I u/ � S.y; x; t I v/j;

and jey�xj D 1, so we can bound I1 by

jI1j �
2˛

ıVı

Z
D\Bı.x/

!ı.jy � xj/ sup
x2D

fjf 00.x/jgjS.y; x; t I u/ � S.y; x; t I v/j dy:

(21)
In what follows C1 D sups2Rfjf

00.s/jg <1 and we make the change of variable

y D x C ı�

jy � xj D � j�j

dy D ı3d�;

and a straightforward calculation shows

I1 �
2˛C1

ı2

Z
H1.0/\fxCı�2Dg

j!.�/j
ju.x C ı�/ � u.x/ � .v.x C ı�/ � v.x//j

j�j
d�

(22)
Which leads to the inequality

jjI1jjL1.DIR3/ �
4˛C1C2

ı2
jju � vjjL1.DIR3/; (23)

with C2 D
R
H1.0/
j�j�1!.j�j/ d� . Now we can work on the second part,

where we follow a similar approach. Noting that g00 is bounded, we let C3 D
sup�2Rfjg

00.�/jg <1 and C4 D
R
H1.0/
j�j!.j�j/d� , to find that
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jg0.�.y; t I u// � g0.�.y; t I v//j � C3j�.y; t I u/ � �.y; t I v/j

�
2C3C4

ı2
ku � vkL1.DIR3/;

and

jg0.�.x; t I u// � g0.�.x; t I v//j � C3j�.x; t I u/ � �.x; t I v/j

�
2C3C4

ı2
ku � vkL1.DIR3/;

so

kI2kL1.DIR3/ �
4ˇC3C4

ı2
ku � vkL1.DIR3/: (24)

Adding (23) and (24) gives the desired result

jjLT .u/.x; t/C LD.u/.x; t/ � .LT .v/.x; t/C LD.v/.x; t//jjL1.DIR3/

�
4.˛C1C2 C ˇC3C4/

ı2
ku � vkL1.DIR3/: (25)

ut

Stability Analysis

In this section we identify a source for crack nucleation as a material defect
represented by a jump discontinuity in the displacement field. To illustrate the
ideas, we assume the defect is in the interior of the body and at least ı away from
the boundary. This jump discontinuity can become unstable and grow in time. We
proceed with a perturbation analysis and consider a time-independent body force
density b and a smooth equilibrium solution u. Now assume that the defect perturbs
u in the neighborhood of a point x by a piecewise constant vector field s that
represents a jump in displacement across a planar surface with normal vector �.
We assume that this jump occurs along a defect of length 2ı on the planar surface.

The smooth equilibrium solution u.x; t/ is a solution of

0 D LT .u/.x; t/C LD.u/.x; t/C b.x/ (26)

Now consider a perturbed solution uP .x; t/ that differs from equilibrium solution
u.x; t/ by the jump across the planar surface which is specified by unit normal vector
�. We suppose the surface passes through x and extends across the peridynamic
neighborhood centered at x. Points y for which .y � x/ � � < 0 are denoted by E��
and points for which .y � x/ � � � 0 are denoted by EC� , see Fig. 3.

The perturbed solution uP satisfies
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Fig. 3 Jump discontinuity

x
ν

y − x

δ = μσ(t)δ = 0

E−
ν

� RuP D LT .uP /.x; t/C LD.uP /.x; t/C b.x/ (27)

Here the perturbed solution uP .x; t/ is given by the equilibrium solution plus a
piecewise constant perturbation and is written

uP .y; t/ D u.y; t/C s.y; t/ (28)

Where

s.y; t/ D

(
0 y 2 E��
N��.t/ y 2 EC�

(29)

Subtracting (26) from (27) gives

� RuP D LT .uP /.x; t/C LD.uP /.x; t/ � LT .u/.x; t/C LD.u/.x; t/ (30)

Here the second term in LD.u/ vanishes as we are away from the boundary,
and the integrand is odd in the y variable with respect to the domain Bı.x/. Since
uP D u C s and s is small, we expand f 0.

p
jy � xj.S.y; x; t I u C s/// in Taylor

series in s. Noting that �.x; t I uCs/ D �.x; t I u/C�.x; t I s/ and �.x; t I s/ is initially
infinitesimal, we also expand g0.�.x; t I u C s// in a Taylor series in �.x; t I s/.
Applying the expansions to (30) shows that to leading order

� RuP D � R�� D
2˛

ıVı

Z
Bı.x/

!ı.jy � xj/p
jy � xj

f 00.
p
jy � xjS/.s.y; t/ � s.x; t//�

e.y�x/e.y�x/dy C
ˇ

Vıı2

Z
Bı.x/

!ı.jy � xj/g00.�.y; t I u//
1

VıZ
Bı.y/

!ı.jz � yj/.s.z; t / � s.y; t// � ez�y d zey�x dy D I1 C I2;

(31)
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where I1 and I2 are the first, second terms on the right-hand side of (31). A
straightforward calculation using (29) shows that

I1 D �
2˛

ıVı

Z
Bı.x/\E��

J ı.jy � xj/

jy � xj
f 00.

p
jy � xjS/e.y�x/ � N��.t/e.y�x/dy (32)

We next calculate I2. A straightforward but delicate calculation gives

1

Vı

Z
Bı.y/

!ı.jz � yj/

ı
.s.z; t / � s.y; t// � ez�y d z D b.y/ � ��.t/ (33)

where

b.y/ D
1

Vı

Z 2	

0

Z ı

a

Z 


0

!.jz � yj/e.�; 
/jz � yj2 sin
 d
 d� d jz � yj (34)

and the limits of the iterated integral are

a D j.y � x/ � �j 
 D arccos

�
j.y � x/ � �j

jz � yj

�
; (35)

and e.�; 
/ is the vector on the unit sphere with direction specified by the angles �
and 
. Calculation now gives

I2 D
ˇ

Vıı2

 Z
Bı.x/\E��

!ı.jy � xj/g00.�.y; t I u//b.y/ � ��.t/ey�xdy

�

Z
Bı.x/\EC�

!ı.jy � xj/g00.�.y; t I u//b.y/ � ��.t/ey�xdy

�
;

(36)

where

Z
Bı.x/\E��

!ı.jy � xj/

ı
b.y/ � �s.t/ey�xdy

D

Z
Bı.x/\EC�

!ı.jy � xj/

ı
b.y/ � �s.t/ey�xdy: (37)

We now take the dot product of both sides of (31) with � to get

� R� D
.AC Bsym/� � �

j�j2
�.t/; (38)
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where

A D �
2˛

ıVı

Z
Bı.x/\E��

J ı.jy � xj/

jy � xj
f 00.

p
jy � xjS/e.y�x/ ˝ e.y�x/dy (39)

and Bsym D .BC BT /=2 with

B D
ˇ

Vıı2

 Z
Bı.x/\E��

!ı.jy � xj/g00.�.y; t I u//b.y/˝ ey�xdy

�

Z
Bı.x/\EC�

!ı.jy � xj/g00.�.y; t I u//b.y/˝ ey�xdy

�
: (40)

Inspection shows that

f 00.
p
jy � xjS/ < 0; when S > SCc : (41)

Thus the eigenvalues of A can be nonnegative whenever the tensile strain is positive
and greater than SCc so that the force is in the softening regime for a preponderance
of points y inside Bı.x/. In general the defect will be stable if all eigenvalues of the
stability matrix ACBsym are negative. On the other hand, the defect will be unstable
if at least one eigenvalue of the stability matrix is positive.

We collect results in the following proposition.

Proposition 1 (Fracture nucleation condition about a defect). A condition for
crack nucleation at a defect passing through a point x is that the associated stability
matrix AC Bsym has at least one positive eigenvalue.
If the equilibrium solution is constant, then �.y; t I u/ D constant and Bsym D 0.
For this case the fracture nucleation condition simplifies and depends only on the
eigenvalues of the matrix A. In the next section, we analyze the size of the set where
the tensile strain is greater than SCc so that the tensile force is in the softening regime
for points y inside Bı.x/.

Control of the Softening Zone

We define the softening zone in terms of the collection of centers of peridynamic
neighborhoods with tensile strain exceeding SCc . In what follows we probe the
dynamics to obtain mathematically rigorous and explicit estimates on the size of the
softening zone in terms of the radius of the peridynamic horizon. In this section we
assume !ı D 1, ı < 1, and from the definition of the hydrostatic strain �.x; t I u/,
we have the following lemma.
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Lemma 1 (Hydrostatic softening implies tensile softening). If �Cc < �.x; t I u/,
then SCc < S.y; x; t I u/ for some subset of points y inside the peridynamic
neighborhood centered at x and

fx 2 D W �.x/ > �Cc g � fx 2 D W S.x; y; t I u/ > S
C
c ; for some y in Bı.x/g:

(42)

Proof. Suppose �Cc < �.x; t I u/, then there are points y in Bı.x/ for which

�Cc < jy � xjS.y; x; t I u/ <
p
jy � xjS.y; x; t I u/; (43)

so

SCc <
�Ccp
jy � xj

< S.y; x; t I u/; (44)

since rC1 < rC2 D �
C
c . This directly implies

fx 2 D W �.x/ > �Cc g � fx 2 D W S.x; y; t I u/ > S
C
c ; for some y in Bı.x/g;

(45)
and the lemma is proved. ut

This inequality shows that the collection of neighborhoods where softening is due
to the hydrostatic force is also subset of the neighborhoods where there is softening
due to tensile force. Motivated by this observation, we focus on peridynamic
neighborhoods where the tensile strain is above critical. We start by defining the
softening zone. The set of points y in Bı.x/ with tensile strain larger than critical
can be written as

ACı .x/ D fy 2 Bı.x/ W S.y; x; t I u/ > SCc g:

From the monotonicity of the force potential f , we can also express this set as

ACı .x/ D fy 2 Bı.x/If .
p
jy � xjS.y; x; t I u// � f .rC1 /g:

We define the weighted volume of the set ACı in terms of its characteristic function
�
A
C

ı
.y/ taking the value one for y 2 ACı and zero outside. The weighted volume

of ACı is given by
R
Bı.x/

�
A
C

ı
.y/jy � xj dy, and the weighted volume of Bı.x/ is

m D
R
Bı.x/
jy � xj dy. The weighted volume fraction Pı.x/ of y 2 Bı.x/ with

tensile strain larger than critical is given by the ratio

Pı.x/ D

R
Bı.x/

�
A
C

ı
.y/jy � xj dy

m
:
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Definition 1 (Softening zone). Fix any volume fraction 0 < � � 1, and with each
time t in the interval 0 � t � T , define the softening zone SZı.�; t/ to be the
collection of centers of peridynamic neighborhoods for which the weighted volume
fraction of points y with strain S.y; x; t I u/ exceeding the threshold Sc is greater
than � , i.e.,

SZı.�; t/ D
˚
x 2 DIPı.x/ > �

�
: (46)

We now show that the volume of SZı.�; t/ goes to zero linearly with the horizon
ı for properly chosen initial data and body force. This scaling is consistent with the
notion that a softening zone of width proportional to ı converges to a sharp fracture
as the length scale ı of nonlocal interaction goes to zero. We define the sum of
kinetic and potential energy as

W .t/ D
�

2
jjPujj2

L2.D;Rd /
C PDı.u.t// (47)

and set

C.t/ D
� 1
p
�

Z t

0

jjbjjL2.D;Rd /d C
p
W .0/

�2
: (48)

Here C.t/ is a measure of the total energy delivered to the body from initial
conditions and body force up to time t . The tensile toughness is defined to be the
energy of tensile tension between x and y per unit length necessary for softening
and is given by f .rC1 /=ı. We now state the geometric dependence of the softening
zone on horizon.

Theorem 2. The volume of the softening zone SZı is controlled by the horizon ı
according to the following relation expressed in terms of the total energy delivered
to the system, the tensile toughness, and the weighted volume fraction of points y
where the tensile strain exceeds SCc ,

Volume.SZı.�; t// �
ıC .t/

�mf .rC1 /
: (49)

Remark 1. It is clear that for zero initial data such that u.0; x/ D 0 that C.t/
depends only on the body force b.t; x/ and initial velocity. For this choice we see
that the softening zone goes to zero linearly with the horizon ı.

We now establish the theorem using Gronwall’s inequality and Tchebychev’s
inequality. The peridynamic energy density at a point x is

Eı.x/ D
1

Vı

Z
D\Bı.x/

jy � xjWı.S.y; x; t I u// dy C Vı.�.x; t I u// (50)
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Which can also be rewritten with the following change of variable y � x D ı�

Eı.x/ D
˛

ıV1

Z
D\B1.0/

!.j�j/f .
p
ıj�jS.xCı�; x; t I u//d�C

ˇg.�.x; t I u//

ı2
(51)

Recall from the monotonicity of f .r/ that rC1 < r implies f .rC1 / < f .r/. Now
define the set where the strain exceeds the threshold SCc

SC;ıD
n
.�; x/2B1.0/�DI xC ı� 2 D and f .rC1 /<f .

p
ıj�jS.xC ı�; x; t I u//

o
(52)

A straightforward calculation with !.j�j/ D 1 shows that

f .rC1 /

ı

Z
SC;ı
j�jd�dx �

Z
SC;ı

1

ı
f .
p
ıj�jS.x C ı�; x; t I u/d�dx

�

Z
D

Eı.x/ dx D PDı.u.t// (53)

We define the weighted volume of the set SC;ı to be

QV .SC;ı/ D

Z
SC;ı
j�jd�dx (54)

and inequality (53) becomes

f .rC1 /

ı
QV .SC;ı/ �

Z
SC;ı

1

ı
f .
p
ıj�jS.x C ı�; x; t; u//d�dx � PDı.u.t// (55)

Next we use Gronwall’s inequality to prove the following theorem that shows that
the kinetic and peridynamic energies of the solution u.x; t/ are bounded by the
energy put into the system.

Theorem 3.

C.t/ �
�

2
kPuk2

L2.DIR2/
C PDı.u.t//: (56)

Proof. We start by multiplying both sides of (12) by Pu to get

� Ru.t/ � Pu.t/ D
�
LT .u/.x; t/C LD.u/.x; t/

�
� Pu.t/C b.t/ � Pu.t/:

Applying the product rule in the first term and integration by parts in the second
term gives
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1

2

d

dt

h
�jjPujj2

L2.D;Rd /
C 2PDı.u.t//

i
D

Z
D

b.t/ � Pu.t/ dx:

Application of Cauchy’s inequality to the right-hand side gives

1

2

d

dt

h
�jjPujj2

L2.D;Rd /
C 2PDı.u.t//

i
D

Z
D

b.t/ � Pu.t/dx

� jjb.t/jjL2.D;Rd /jjPu.t/jjL2.D;Rd /: (57)

Now set QW .t/ D �jjPujj2
L2.D;Rd /

C2PDı.u.t//C � where � is a positive number and
can be taken arbitrarily small and (57) becomes,

1

2
QW 0.t/ D� jjb.t/jjL2.D;Rd /jjPu.t/jjL2.D;Rd /

� jjb.t/jjL2.D;Rd /

q
QW .t/
p
�

Now we can write

1

2

Z t

0

QW 0./q
QW ./

d �
1
p
�

Z t

0

jjbjjL2.D;Rd /d

Which simplifies to

q
QW .t/ �

q
QW .0/ �

1
p
�

Z t

0

jjbjjL2.D;Rd /d: (58)

Since � can be made arbitrarily small, we find that

p
W .t/ �

p
W .0/ �

1
p
�

Z t

0

jjbjjL2.D;Rd /d; (59)

and (56) follows. ut

We apply inequality (55) and Theorem 3 to get the fundamental inequality.

QV .SC;ı/ �
C.t/ı

f . Nr/
: (60)

The fundamental inequality above is defined on B1.0/ � D, and we now use it
to bound the volume of the softening zone on D. Introducing the characteristic
function �S

C;ı
.�; x/ and taking the value 1 when .�; x/ 2 SC;ı and 0 otherwise, we

immediately have
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mPı.x/ D

Z
B1.0/

�S
C;ı

.�; x/j�jd�:

So we can rewrite equation (54) as

QV .SC;ı/ D

Z
D

Z
B1.0/

�S
C;ı

.�; x/j�jd�dx

D m

Z
D

Pı.x/ dx:

(61)

Now applying Tchebychev’s inequality to (61) with SZı.�; t/ defined by (46) gives
the desired result

Volume.SZı.�; t// �
1

�

Z
D

Pı.x/ dx D
QV .SC;ı/

m�
�

C.t/ı

m�f .rC1 /
: (62)

Calibration of the Model

In this section we show how to calibrate this model using the known elastic
properties and energy release rate of fracture associated with a given material.

Calibrating the Peridynamic Energy to Elastic Properties

We start by considering a bodyD for which the strain S is small. Here small means
for a fixed jy�xjwe have jS j << jS˙c j, j� j << j�

˙
c j. Now we proceed to calculate

the peridynamic energy density inside the material due to the presence of a small
deformation u.x/. Suppose that the strain at the length scale of a neighborhood of
horizon ı is a linear function, i.e.,

S.u; y; x/ D
u.y/ � u.x/

jy � xj
�
y � x

jy � xj

D F
y � x

jy � xj
�
y � x

jy � xj
D Fe � e;

(63)

here F is a 3 by 3 matrix. We expand the first potential with respect to S and the
second in � keeping in mind that

f .0/ D f 0.0/ D g.0/ D g0.0/ D 0
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to get

f
�p
jy � xjS

�
D
jy � xj

2
f 00.0/S2 CO.S3/

g
�
�.x; t IS/

�
D
1

2
g00.0/�2 CO.�3/

(64)

So we write the energy density which was defined in Eq. (50) for points x of
distance ı away from the boundary @D to leading order

Eı D
1

Vı

˛f 00.0/

2ı

Z
Hı.x/

!ı.jy � xj/jy � xj.Fe � e/2dy

C
ˇg00.0/

2ı2

�
1

Vı

Z
Hı.x/

!ı.jy � xj/jy � xjFe � e dy

�2 (65)

The change of variable ı� D y � x gives to leading order

Eı D
˛f 00.0/

2V1

Z
H1.0/

!.j�j/j�j.Fe � e/2d�

C
ˇg00.0/

2V 2
1

�Z
H1.0/

!.j�j/j�jFe � e d�

�2 (66)

Observe that .Fe � e/2 D
P

ijkl Fij Fklei ej ekel and the first term in (66) is given by

X
ijkl

MijklFij Fkl (67)

where

Mijkl D
˛f 00.0/

2V1

Z
H1.0/

j�j!.j�j/ ei ej ekel d� D
˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j

Z
S2
ei ej ekel de: (68)

where de is an element of surface measure on the unit sphere. Next observe Fe �e DP
kj Fkj ekej and the second term in (66) is given by

ˇg00.0/

2V 2
1

0
@X

ij

ƒij Fij

1
A
2

D
ˇg00.0/

2V 2
1

X
ijkl

ƒijƒklFij Fkl : (69)
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where

ƒjk D

Z
H1.0/

j�j!.j�j/ ej ek d� D

Z 1

0

j�j3!.j�j/d j�j

Z
S2
ej ek de: (70)

Focusing on the first term, we show that

Mijkl D 2�

�
ıikıjl C ıil ıjk

2

�
C �ıij ıkl (71)

where � and � are given by

� D � D
˛f 00.0/

10

Z 1

0

j�j3!.j�j/ d j�j: (72)

To see this we write

�ijkl .e/ D ei ej ekel ; (73)

to observe that �.e/ is a totally symmetric tensor valued function defined for e 2 S2

with the property

�ijkl .Qe/ D QimemQjnenQkoeoQlpep D QimQjnQkoQlp�mnop.e/ (74)

for every rotation Q in SO3. Here repeated indices indicate summation. We write

Z
H1.0/

j�j3!.j�j/ ei ej ekel d� D

Z 1

0

j�j3!.j�j/d j�j

Z
S2
�ijkl .e/ de (75)

to see that for every Q in SO3

QimQjnQkoQlp

Z
S2
�ijkl .e/ de D

Z
S2
�mnop.Qe/ de D

Z
S2
�mnop.e/ de: (76)

Therefore we conclude that
R
S2
�ijkl .e/ de is invariant under SO3 and is therefore

an isotropic symmetric fourth-order tensor and necessarily of the form

Z
S2
�ijkl .e/ de D a

�
ıikıjl C ıil ıjk

�
C bıij ıkl : (77)

So M can be written in the form

Mijkl D 2�

�
ıikıjl C ıil ıjk

2

�
C �ıij ıkl ; (78)
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with suitable choices of � and �. To evaluate � and �, we note the following
relations between � and � for isotropic fourth-order tensors of the form above and
their contractions

Mi ijj D 3.2�C 3�/; (79)

Mij ij D 3.4�C �/: (80)

These relations can be readily verified by direct calculation.
On the other hand from the definition of M given by (68), we have

Mi ijj D
˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j

Z
S2
e2i e

2
j de D

4	˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j;

(81)

Mij ij D
˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j

Z
S2
e2i e

2
j de D

4	˛f 00.0/

2V1

Z 1

0

j�j3!.j�j/ d j�j;

(82)

since e2i D
P

i e
2
i D 1. Equation (72) now follows on recalling that V1 D 4

3
	 and

solving the system given by (79) and (80).
Focusing on the second term of (66) given by (69), we show that

ƒij D
4	

3

Z 1

0

j�j3!.j�j/ d j�jıij (83)

To see this we write

ƒij .e/ D ei ej ; (84)

to observe thatƒ.e/ is a totally symmetric tensor valued function defined for e 2 S2

with the property

ƒij .Qe/ D QimemQjnen D QimQjnƒmn.e/ (85)

for every rotation Q in SO3. As before repeated indices indicate summation. We
consider

Z
S2
ƒij .e/ de (86)

to see that for every Q in SO3

QimQjn

Z
S2
ƒij .e/ de D

Z
S2
ƒmn.Qe/ de D

Z
S2
ƒmn.e/ de: (87)
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Therefore we conclude that
R
S2
ƒij .e/ de is an isotropic symmetric second-order

tensor and of the form
Z
S2
ƒij .e/ de D aıij ; (88)

i.e., a multiple of the identity. So from (70) ƒ is of the form

ƒij D �ıij : (89)

To evaluate � we take the trace of (70) and (83) as follows.
Now the second term is given by

ˇg00.0/

2V 2
1

�
4	

3

�2 �Z 1

0

j�j3!.j�j/d j�j

�2X
ijkl

ıij ıklFij Fkl D

D ˇg00.0/
1

2

�Z 1

0

j�j3!.j�j/d j�j

�2X
ijkl

ıij ıklFij Fkl D KijklFij Fkl (90)

Collecting results we see that the leading order of the energy is given by

Eı D
X
ijkl

.Mijkl CKijkl /Fij Fkl D
X
ijkl

�
2�
ıikıjl C ıil ıjk

2
C �ıij ıkl

�
FijFkl

(91)

where the shear modulus is given by

� D
˛f 00.0/

10

Z 1

0

j�j3!.j�j/ d j�j; (92)

and the Lame constant is given by

� D
˛f 00.0/

10

Z 1

0

j�j3!.j�j/ d j�j C
ˇg00.0/

2

�Z 1

0

j�j3!.j�j/d j�j

�2
: (93)

One is free to choose ˛ and ˇ provided that the resulting elastic tensor satisfies the
constraints of ellipticity. Here one is no longer restricted to Poisson ratios of 1=4 as
in the bond-based formulation.

An identical calculation shows that for two-dimensional problems the elastic
constants are given by

� D
˛f 00.0/

8

Z 1

0

j�j2!.j�j/ d j�j; (94)



22 R. Lipton et al.

Fig. 4 Evaluation of energy
release rate Gs . For each point
x along the dashed line,
0 � z � ı, the work required
to break the interaction
between x and y in the
spherical cap is summed up
in (96) using spherical
coordinates centered at x

y

z

x

ζ
δ

θ

arccos(z/ζ)

and

� D
˛f 00.0/

8

Z 1

0

j�j2!.j�j/ d j�j C
ˇg00.0/

2

�Z 1

0

j�j2!.j�j/d j�j

�2
; (95)

and one is no longer restricted to Poisson ratio 1=3 materials.
We note here that the two-dimensional moduli N� and N� are directly related to

the well-known moduli appearing in the plane strain or plane stress solutions for
isotropic materials. This relationship is now well known and can be found in Jasiuk
et al. (1994) and also Milton (2002).

Calibrating Energy Release Rate

In regions of large strain, the same force potentials (3) and (4) are used to calculate
the amount of energy consumed by a crack per unit area of growth, i.e., the energy
release rate. The energy release rate equals the work necessary to eliminate force
interaction on either side of a fracture surface per unit fracture area. In this model
the energy release rate has two components: one associated with the force potential
for tensile strain (3) and the other associated with the force potential for hydrostatic
strain (4). The critical energy release rate Gs associated with fracture under tensile
forces is found to be the same for all choices of horizon ı. However the critical
energy release rate for hydrostatic fracture Gh increases with decreasing horizon
and becomes infinite as ı ! 0 at the rate 1=ı.

For tensile forces we use (3) and calculate the work required to eliminate
interaction between two points x and y; this is given by Wı.1/ D limS!1Wı.S/

where Wı.1/ D !ı.jy � xj/f1=ı. We suppose x gives the center of the
peridynamic neighborhood located a distance z away from the planar interface
separating upper and lower half spaces. We suppose x lies in the lower half space,
and the points y lie in the upper half space inside the peridynamic neighborhood of x
(see Fig. 4). The critical energy release rate Gs associated with tensile forces equals
the work necessary to eliminate force interaction on either side of a fracture surface
per unit fracture area. It is given in three dimensions by integration of Wı.1/ over
the intersection of the neighborhood of x and the upper half space given by the
spherical cap (see Fig. 4),
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Fig. 5 Hydrostatic energy
release rate Gh

x = (0, 0, z)

δ

Gs D
4	

Vı

Z ı

0

Z ı

z

Z cos�1.z=�/

0

Wı.1; �/�2 sin
 d
 d� d z (96)

where � D jy �xj. This integral is calculated and for d dimensions d D 1; 2; 3, the
result is

Gs DM
2!d�1

!d
f1 ; (97)

where M D
R 1
0
rd!.r/dr and !d is the volume of the d dimensional unit ball,

!1 D 2; !2 D 	; !3 D 4	=3. We see from this calculation that the critical energy
release rate is independent of ı.

For hydrostatic forces we use (4) and calculate the work required to eliminate
interaction between x and the upper half plane. As before we suppose x gives the
center of the peridynamic neighborhood located a distance z away from the planar
interface separating upper and lower half spaces. We suppose x lies in the lower half
space, and the peridynamic neighborhood of x intersects the upper half space (see
Fig. 5).

The critical energy release rate Gh associated with hydrostatic forces equals the
work necessary to eliminate force interaction on either side of a fracture surface
per unit fracture area. The work per unit volume needed to eliminate hydrostatic
interaction between a point x and its neighbors is

Vı.1/.x/ D lim
�!1

ˇg.�/

ı2
D
ˇg1

ı2
: (98)

For points x D .0; 0; z/, with 0 < jzj < ı above and below the z D 0 plane, the
work per unit area to eliminate hydrostatic interaction between the lower half space
z < 0 and upper half space z > 0 is

Gh D 2
Z ı

0

ˇg1

ı2
d z D

2ˇg1

ı
: (99)
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For d dimensions d D 1; 2; 3, the result is the same and

Gs D
2ˇg1

ı
: (100)

We see from this calculation that the energy release rate for hydrostatic fracture is
increasing at the rate 1=ı.

Linear Elastic Operators in the Limit of Vanishing Horizon

In this section we consider smooth evolutions u in space and show that away from
fracture set the operators LT C LD acting on u converge to the operator of linear
elasticity in the limit of vanishing nonlocality. We denote the fracture set by QD
and consider any open un-fractured set D0 interior to D with its boundary a finite
distance away from the boundary of D and the fracture set QD. In what follows
we suppose that the nonlocal horizon ı is smaller than the distance separating the
boundary of D0 from the boundaries of D and QD.

Theorem 4. Convergence to linear elastic operators. Suppose that u.x; t/ 2
C2.Œ0; T0�; C

3.D;R3// and for every x 2 D0 � D n QD, then there is a constant
C > 0 independent of nonlocal horizon ı such that, for every .x; t/ in D0 � Œ0; T0�,
one has

jLT .u.t//C LD.u.t// � r � C E.u.t//j < Cı; (101)

where the elastic strain is E.u/ D .ruC.ru/T /=2 and the elastic tensor is isotropic
and given by

Cijkl D 2 N�

�
ıikıjl C ıil ıjk

2

�
C N�ıij ıkl ; (102)

with shear modulus N� and Lamé coefficient N� given by (92) and (93). The numbers
˛ and ˇ can be chosen independently and can be any pair of real numbers such that
C is positive definite.

Proof. We start by showing

jLT .u.t// � f
00.0/

2!3

Z
B1.0/

ej�jJ .j�j/ei ej ek d�@
2
jkui .x/j < Cı; (103)

where !3 D 4	=3 and e D ey�x are unit vectors on the sphere; here
repeated indices indicate summation. To see this recall the formula for LT .u/
and write @Sf .

p
jy � xjS/ D f 0.

p
jy � xjS/

p
jy � xj. Now Taylor expand
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f 0.
p
jy � xjS/ in

p
jy � xjS and Taylor expand u.y/ about x, denoting ey�x by

e to find that all odd terms in e integrate to zero and

jLT .u.t//l �
2

Vı

Z
Bı.x/

J ı.jy � xj/

ıjy � xj

f 00.0/

4
jy � xj2@2jkui .x/ei ej ekel ; dyj

< Cı; l D 1; 2; 3:

(104)

On changing variables � D .y � x/=ı, we recover (103). Now we show

jLD.u.t//k �
1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
ˇg00.0/

2!3

Z
B1.0/

j�j!.j�j/ekel d�@
2
lj ui .x/j

< Cı; k D 1; 2; 3:
(105)

We note for x 2 D0 that D \ Bı.x/ D Bı.x/ and the integrand in the second term
of (14) is odd and the integral vanishes. For the first term in (14), we Taylor expand
@�g.�/ about � D 0 and Taylor expand u.z/ about y inside �.y; t/ noting that terms
odd in e D ez�y integrate to zero to get

j@�g.�.y; t// � g
00.0/

1

Vı

Z
Bı.y/

!ı.jz � yj/jz � yj@j ui .y/ei ej d zj < Cı3: (106)

Now substitution for the approximation to @�g.�.y; t// in the definition of LD gives

ˇ̌
ˇLD.u/ 1

Vı

Z
Bı.x/

!ı.jy � xj/

ı2
ey�x

1

2Vı

Z
Bı.y/

!ı.jz � yj/jz � yj

ˇg00.0/@j ui .y/ei ej d z dy
ˇ̌
ˇ < Cı:

(107)

We Taylor expand @j ui .y/ about x; note that odd terms involving tensor products
of ey�x vanish when integrated with respect to y in Bı.x/, and we obtain (105).

We now calculate as in (Lipton 2016 equation (6.64)) or in section “Calibrating
the Peridynamic Energy to Elastic Properties” to find that

f 00.0/

2!3

Z
B1.0/

j�jJ .j�j/ei ej ekel d�@
2
jkui .x/

D

�
2�1

�
ıikıjl C ıil ıjk

2

�
C �1ıij ıkl

�
@2jkui .x/;

(108)

where

�1 D �1 D
f 00.0/

10

Z 1

0

r3!.r/ dr: (109)
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Next observe that a straightforward calculation gives

1

!3

Z
B1.0/

j�j!.j�j/ei ej d� D ıij

Z 1

0

r3!.r/ dr; (110)

and we deduce that

1

!3

Z
B1.0/

j�j!.j�j/ei ej d�
ˇg00.0/

2!3

Z
B1.0/

j�j!.j�j/ekel d�@
2
lj ui .x/

D
ˇg00.0/

2

�Z 1

0

r3!.r/ dr

�2
ıij ıkl@

2
lj ui .x/:

(111)

Theorem 4 follows on adding (108) and (111) ut

Conclusions

We have introduced a regularized model for free fracture propagation based on
nonlocal potentials. At each instant of the evolution, we identify the softening
zone where strains lie above the strength of the material. We have shown that
discontinuities associated with flaws larger than the length scale of nonlocality ı
can become unstable and grow. An explicit inequality is found that shows that
the volume of the softening zone goes to zero linearly with the length scale of
nonlocal interaction. This scaling is consistent with the notion that a softening
zone of width proportional to ı converges to a sharp fracture as the length scale
of nonlocal interaction goes to zero. Inside quiescent regions with no cracks, the
nonlocal operator converges to the local elastic operator at a rate proportional to
the radius of nonlocal interaction. We show that the model can be calibrated to
measured values of critical energy release rate, shear modulus, and bulk modulus of
material samples. The double-well state-based potential developed here no longer
has Poisson ratio constrained to be 1=4. For this model we can choose the potentials
so that the small strain behavior is specified by the isotropic elasticity tensor for any
material with prescribed shear and Lamé moduli.

The energy release rate necessary for tensile forces to create fractures is constant
in ı, whereas the forces necessary to create a fracture using hydrostatic forces grows
as 1=ı. Thus creation of fracture surfaces by hydrostatic forces will not be seen when

ı <
2ˇg1

Gs
: (112)

On the other hand, the elastic properties for small strains can be made to correspond
to any positive definite isotropic elastic tensor.
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