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Abstract

Magnetic nanoparticle hyperthermia is an emerging cancer therapy that utilizes magnetic nanopar-
ticles subjected to alternating magnetic fields to generate localized heating and selectively target
tumor tissues. Despite its potential, clinical implementation faces significant challenges due to
uncertainties in the thermophysical properties, nanoparticle distribution, and magnetic particle pa-
rameters, which can compromise the precision and efficacy of the treatment. This article introduces
an information-theoretic framework for optimal experimental design in magnetic nanoparticle hy-
perthermia to address these challenges. By accounting for uncertainties in key parameters, such as
tissue thermal conductivity, blood perfusion rate, and nanoparticle anisotropy constant, the frame-
work maximizes mutual information between the observed data and model parameters, enhancing
the accuracy of parameter estimation. A surrogate 1D model is employed to reduce computational
complexity, allowing the identification of optimal magnetic field amplitudes across diverse initial
conditions and scenarios, including single and multiple uncertain parameters. The results highlight
the robustness of the optimization approach, demonstrating consistent convergence to a stable solu-
tion that is expected to enable precise temperature measurement and effective parameter recovery.
This study underscores the potential for mutual information-based optimization to advance the
planning of magnetic nanoparticle hyperthermia treatment and provides a foundation for future
experimental and clinical applications.
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1. Introduction

Cancer is a global health problem and is rising and surpassing cardiovascular and cerebrovas-
cular diseases as the leading cause of death [1]. To address this challenge, we need better and
safer treatments. Traditional treatment methods, including surgery, chemotherapy, and radiation
therapy, have limitations and side effects [2]. As a result, alternative or adjuvant treatments are
being investigated to improve efficacy and minimize side effects. One such approach is hyperthermia
therapy, which induces a therapeutic effect by raising the tissue temperature between 40 ° C and 45
° C, thus killing or eradicating cancer cells [3]. Elevated temperature activates apoptotic pathways
and makes cancer cells more susceptible to chemotherapy and radiation therapy [4, 5]. Recently,
nanoparticle-based therapies, such as magnetic or photo-induced hyperthermia, are promising and
minimally invasive options that offer targeted treatment [6]. Magnetic hyperthermia uses magnetic
nanoparticles (MNPs) exposed to an alternating magnetic field (AMF) to generate localized heating
within tumors, raise the temperature and damage malignant cells [7, 8, 9]. This method allows for
precise targeting of tumors and less damage to surrounding healthy tissues, providing an advantage
over the conventional methods [10]. A major advantage of magnetic hyperthermia is that it pro-
vides controlled and consistent heating and minimizes the risk of side effects [11]. FDA-approved
superparamagnetic iron oxide nanoparticles as magnetic resonance imaging contrast agents accel-
erated the use of these particles in hyperthermia [12, 13, 14]. However, the clinical application of
hyperthermia is hindered by several technical challenges, including uncertainties in tissue thermo-
physical properties, variability in intratumoral nanoparticle distribution, particle-specific magnetic
parameters, and differences in heat delivery methods among various hyperthermia treatments [15].
Enhancing the precision, safety, and effectiveness of magnetic nanoparticle hyperthermia requires a
systematic approach to designing treatment parameters. This process involves adjusting key vari-
ables and conditions to achieve the most efficient and effective therapeutic outcomes. Within the
context of magnetic nanoparticle hyperthermia, fine-tuning nanoparticle characteristics, improv-
ing intratumoral distribution, and optimizing magnetic field parameters are crucial for maximizing
therapeutic efficacy while minimizing collateral damage to healthy tissues. By employing advanced
optimization techniques, greater temperature control, improved heat localization within tumors, and
consistent treatment outcomes can be achieved, making hyperthermia a more reliable and effective
modality for cancer therapy. Systematic refinement of parameters ensures that treatment conditions
are tailored to individual patient needs, reducing variability and enhancing clinical applicability.
The following sections summarize previous research efforts focused on optimizing treatment pa-
rameters to advance the clinical potential of magnetic hyperthermia and highlight further research
needed to improve the efficacy of treatment.

1.1. Prior work

Hyperthermia therapy has been studied for its ability to kill cancer cells directly and boost
the effectiveness of chemotherapy and radiotherapy, making it an important adjuvant therapy in
multi-modality cancer treatment [16, 17]. Preclinical and clinical trials in prostate cancer have
shown better outcomes with hyperthermia [18, 19]. These efforts highlight that it can be both
standalone and adjuvant therapy. Given this potential, many studies have focused on optimizing
hyperthermia treatment protocols with regard to precision, safety, and efficacy. Jiang et al. [20]
optimized nanoparticle delivery by studying multi-site magnetic nanoparticle injection using the
Lattice Boltzmann method combined with particle swarm optimization. They found that increasing



the number of nanoparticle injection sites improved temperature homogeneity within the tumor,
which is essential for uniform treatment and reducing the chance of overheating surrounding normal
tissues. Wang et al. [21] developed an optimal temperature control system for tissues with gold
nanoparticles using a two-energy equation model, which allows for precise temperature control by
considering both conductive and convective heat transfer. Their approach minimized unintended
thermal effects on surrounding tissues through periodic heating with an emphasis on controlled
and localized treatment. Arora et al. [22] developed a minimum-time thermal dose control system
that adjusted the treatment parameters to minimize the treatment time and prevent overheating
of normal tissues. Their method was validated through simulations and in vitro experiments,
showing the feasibility of time-optimal thermal therapy. They also explored the use of constrained
predictive control in thermal therapies to optimize the treatment time while satisfying the safety
constraints for normal tissues [23]. Barrera et al. [24] studied trapezoidal driving-field waveforms
that improved specific loss power and temperature control and, hence, better cancer treatment.
Abbasi and Malek [25] introduced a point-wise optimal control scheme based on the semigroup
theory to refine heat delivery within tumor sites. By solving the thermal wave equation, they
developed a strategy that controlled the heat deposition at the tumor location, optimizing the
strength of the heat source while preventing damage to surrounding normal tissues. Although
the above studies have advanced hyperthermia treatment by optimizing nanoparticle injection,
temperature control, treatment efficacy, and safety for hyperthermia-based cancer therapy, the field
has not systematically investigated patient-specific variability and uncertainties in thermophysical
properties and nanoparticle distribution.

1.2. Gaps and motivation for this work

The effectiveness of magnetic nanoparticle hyperthermia is affected by various thermophysical
properties, such as tissue density, specific heat, thermal conductivity, blood perfusion rate, and heat
dissipation by particles. The efficiency of heat generation is also greatly affected by nanoparticle
characteristics such as size, magnetic anisotropy constant, and magnetization strength. Conven-
tional optimization methods in hyperthermia focus on enhancing thermal dose, typically measured
through cumulative equivalent minutes at 43 ° C (CEM43) or thermal damage models, while assum-
ing constant nanoparticle properties and tissue characteristics. These assumptions do not consider
patient-specific variations, which may result in suboptimal or inconsistent treatment outcomes. We
propose a model-based, information-theoretic approach to optimize experimental conditions, con-
sidering the uncertainty associated with the thermophysical properties of tissues and nanoparticle
parameters during hyperthermia treatment. This approach accounts for both interpatient vari-
ability and intrapatient heterogeneity across different organs, thereby improving the precision and
reliability of hyperthermia therapy. Additionally, for newly synthesized nanoparticles designed for
hyperthermia applications, important magnetic parameters are often unknown. In these situations,
it is necessary to gather experimental data in order to fit suitable models and estimate these param-
eters. Randomized experimental designs could result in data that provide suboptimal information
on the variables of interest, increasing the uncertainty in the recovered parameters and reducing
the accuracy of parameter estimation. To address these challenges, we emphasize the importance
of systematically designing and optimizing experiments to maximize the information obtained from
temperature measurements. This study aims to identify an optimal magnetic field amplitude and
its dynamic variation during treatment to improve parameter estimation accuracy, thereby improv-
ing the precision and effectiveness of hyperthermia therapy. By integrating information-theoretic
optimization strategies, this framework aims to refine experimental protocols, minimize parameter
uncertainty, and advance personalized magnetic hyperthermia treatment. Specifically, the parame-



ters considered for recovery or estimation in this study include tissue density, specific heat, thermal
conductivity, blood perfusion rate, and the magnetic anisotropy constant. The information-theoretic
framework introduced in this study is based on optimal experimental design methodologies, which
leverage the Fisher information matrix and the Cramér-Rao bound to establish a lower limit on
the variance of unbiased estimators [26, 27]. Indeed, the de Bruijn identity [28] offers a funda-
mental link between the derivatives of entropy calculations and the Fisher information matrix,
reinforcing the theoretical foundation of this approach. Conventional approaches to optimizing the
Fisher information matrix require prior estimates of tissue properties, such as density, specific heat,
thermal conductivity, blood perfusion rate, and the particle magnetic anisotropy constant. These
estimates are iteratively refined using experimental data, necessitating repeated optimization cycles.
In contrast, the framework proposed in this study directly integrates parameter uncertainties by
incorporating their probability distributions into mutual information (MI) calculations. This ap-
proach enables a more systematic and unified optimization of MI, eliminating the need for repeated
re-optimization. By leveraging this novel framework, the study aims to enhance the accuracy of
recovered parameters, ultimately improving treatment precision and efficacy in magnetic hyperther-
mia applications.

2. Methods

2.1. Heat transfer model

During thermal therapy-induced hyperthermia, the temperature of the tissue is elevated beyond
the normal physiological temperature limit of 37 °C. Temperature distribution within the biological
tissues is a complex process involving different aspects of heat transport including heat conduction
within the tissues, blood perfusion and the associated convective transfer, heat generation due
to tissue metabolic activity, and the local vasculature structure. Pennes [29] presented the first
mathematical model for temperature distribution in biological tissues by analyzing heat transfer in a
resting human forearm. Even though Pennes’ bioheat equation (PBHE) was the first mathematical
model (developed in 1948), it is still widely used in hyperthermia therapy modeling due to its
simplicity. The PBHE describes the spatial-temporal distribution of temperature, u(x,t) at a given
spatial location x and time t within the biological tissue as:

0
pca—?: =V (kVu) + ppepw(up — 1) + Qum + Qunp(x,t), Vx € Q,
Qunp (X, 1) = a X SAR X Cyynp (%),
u(x,0) = up(x), x €, (1)

Vu(x,t) - n=0, x&0ym,
—kVu(x,t) - n=h(u—1us), XE€ I ony,

where  is the domain volume, 0y, is the symmetric boundary, 0oy is the convective heat
transfer boundary, p is the tissue density, ¢ is the specific heat of the tissue, k is the tissue thermal
conductivity, p, is the blood density, ¢, is the specific heat of the blood, w is the blood perfusion
rate in tissue, @y, is the metabolic heat generation rate in the tissue, Qmnp is the heat generated
by the magnetic particles under the action of an external magnetic field, n is the outward unit
normal vector, h is the heat transfer coefficient, and u., is the ambient air temperature. In this
study, the metabolic heat generation rate is neglected, as the heat produced by MNPs significantly
exceeds metabolic heat generation. The heat source due to the presence of nanoparticles, Qunp,
is correlated to the magnetic nanoparticle concentration, Cy,y,p, and the specific absorption rate



(SAR) of the nanoparticles in aqueous solution, scaled by « to account for the crowded effects when
particles are in tissues. The initial temperature of the tissue is denoted by wuy(x), and Neumann
and Robin boundary conditions are used appropriately on the domain boundaries. One of the main
challenges in using the model given in Eq. (1) is that the tissue parameters are often unknown and
can vary from one patient to another [30]. Therefore, it is reasonable to consider these parameters
as uncertain, with some prior knowledge about their values.

2.2. Heat Generation by Magnetic Particles

Rosensweig [31] developed the theoretical background for understanding the heating mechanisms
of magnetic nanoparticles when subjected to an external AMF. His approach was based on the Debye
model for dielectric dispersion in polar fluids, under the assumption that magnetic nanoparticles
exhibit a linear response to the applied magnetic field. Magnetic nanoparticles, under the action of
an external AMF, generate heat due to Néel [32] and Brownian [33] relaxation mechanisms. When
the magnetic fluid is exposed to an AMF, the nanoparticles in the fluid rotate to align the magnetic
moments in the direction of the applied magnetic field. The two different ways to achieve this
alignment are Brownian motion, in which the entire particle rotates in the liquid medium, and Néel
relaxation, in which the magnetic moment within the particle rotates in the direction of the applied
field. The Brownian (75) and Néel (1) relaxation times are expressed, respectively as follows:

B — s 2
KBUref ( )

o \/E RBUyef KVM
TN —To< 5 KV exp KBtres ) (3)

where g is magnetic fluid viscosity, Vy is the hydrodynamic volume of the nanoparticle expressed
as Vg = M, a is the particle radius, 0 is the liquid layer thickness, kg is Boltzmann constant,
Ures is nanofluid temperature which is considered to be 37 °C (normal physiological temperature),
To is the attempt time which represents the characteristic time scale associated with how frequently
a magnetic moment attempts to switch its orientation due to thermal fluctuations and is considered
to be 1072 s for iron oxide nanoparticles [34], K is the magnetic anisotropy constant, and Vj; is
the magnetic volume of the particle expressed as Vj; = @. Since both relaxation mechanisms
contribute to heat dissipation, the overall relaxation behavior of the particles is characterized by

the effective relaxation time (7), which combines both Brownian and Néel contributions as:
1 1 1

- 4= 4
T TB+TN ()

and

Under the influence of an AMF, magnetic nanoparticles undergo relaxation mechanisms that result
in energy dissipation as heat. This thermal energy loss, governed by Néel and Brownian relaxation
processes, is quantified as volumetric power dissipation (P), which defines the rate of heat generation
per unit volume when nanoparticles are dispersed in a liquid medium. For a homogeneous and
monodisperse suspension of magnetic nanoparticles, the volumetric power dissipation is given by:

P = pom fHY", (5)

where o is the magnetic permeability of free space, f is the frequency of the alternating field, H
is the applied magnetic field amplitude, and x” is the loss/imaginary component of the magnetic
susceptibility, which is expressed as:

v 2rfr
1+ (27Tf7)2X0’ (6)
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where 7 is the effective relaxation time and o is the equilibrium (static) magnetic susceptibility
which quantifies how much a material becomes magnetized when exposed to an external magnetic
field. The static magnetic susceptibility (xo) is expressed as a function of initial magnetic suscep-
tibility (x;) and Langevin parameters (§) as follows:

Yo = Xi (Cot(f) - 1) , (7)

§ §
_ HoMGoVi (8)
‘ 3KBUres
M HV,
= MoVl Vg 9)
KBUref

where My is the domain magnetization of the magnetic particle. In general, the heating ability of
the nanoparticles is expressed as the SAR representing the power generated per unit mass of the
magnetic particle. The SAR of the nanoparticles is calculated from the volumetric heat dissipation
by nanoparticles when dispersed in a liquid medium, which is expressed as:

P

SAR= —
Pranp®

(10)
where P is the volumetric power dissipation of the nanoparticles dispersed in the fluid, pynp is the
mass density of the nanoparticles, and ¢ is the volume fraction of nanoparticles in the nanofluid.

2.83. Surrogate model

The first step in this investigation was the selection of the spatial domain and the corresponding
model. The full 3D model consists of a spherical tumor embedded within a surrounding healthy
skin layer, representing the computational domain. We calculated the complete 3D model solution
in 9 minutes using the commercial software package COMSOL Multiphysics on a ten-core, 16 GB
RAM, and 1.80 GHz laptop for 1800 s of treatment time. As the optimization procedure necessitates
the computation of the forward model solution multiple times, a time-efficient solution strategy is
required. Thus, we employed a one-dimensional surrogate model that maintains the geometric
similarity to reduce the solution time during the optimization. The 1D model is based on the same
governing equation as given in Eq.(1) and is geometrically the same as the 3D model. We then
devised a numerical solution strategy using the backward Euler’s method for time and a central
differencing scheme for space. The computation time and temperature distribution predictions of
the surrogate and full models are then compared. This approach proved to be highly efficient, with
the computation time being 1.2 s for the surrogate model (compared to 9 minutes for the full 3D
model) while providing an identical solution to the full model (details presented in the Results
section). We refer to this 1D model as a surrogate model, and the 1D model replaces the original
3D model in the optimization step.

2.4. Mathematical Framework for Optimal Experimental Design

The parameters in the mathematical model, as described in Egs. (1)—(10), that influence the
temperature elevation are categorized into three groups: 1) Fixed (deterministic) parameters, which
remain constant with known values, as listed in Table 1. 2) Model (uncertain) parameters, which
vary between patients and nanoparticle systems. The model parameters P = {pc, k,w, K} are
listed in Table 2. 3) Design parameters, defined as K = {Hy, Hs, ..., Hy/} where H; represents the
magnetic field amplitude over each time interval. As described in Eq. (5), the power deposition is
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Table 1: List of fixed parameters in the model

Parameter \ Value \ Description
Computational domain (considered in this study)
Rr 5 mm Radius of the tumor
Ts 0.5 mm Thickness of skin layer
Blood|[35]
Db 1000 kg/m3 Density
Ch 3840 J/kg-K Specific heat
Up 37 °C Arterial blood temperature
Magnetic particle[36]
Dy 16 nm Particle diameter
o 0.1 dimnp Liquid layer thickness
Prmnp 5180 kg/m? Particle density
My 446 kA /m Magnetization
L 1x 1073 Pa- s Magnetic fluid viscosity
Cornngp 4 mg/cm? of tumor MNP dose in tumor
\Y 1 ml Injected magnetic nanofluid volume
Constant parameters[34, 37]
140 47 x 107" H/m Permeability of free space
KB 1.34 x 10723 J/K Boltzmann constant
To 1x1077s Attempt time
« 0.55 Correction factor
Ambient parameters|38]
h 10 W/m?-K Heat transfer coefficient
Uno 24 °C Ambient temperature
Simulation parameters (considered in this study)
f 163 kHz Field frequency
ty 1800 s Treatment time
M 30 number of field on/off cycles (Time Steps)

Table 2: Model parameters (P) used in initialization and optimization steps.

Parameter | Default value Range Description
pc 3.5 x 10% kg/m? | [ 2.5 x 105, 4.0 x 10°] | Tissue density and specific heat product
k 0.492 W/mK [0.300, 0.570] Tissue thermal conductivity
w 0.00682 1/s [0.00111, 0.01390] Blood perfusion rate
K 31500 J/m? [20000, 53000] Magnetic anisotropy constant

directly proportional to the applied magnetic field H. During treatment, H(t¢) is assumed to be
piecewise constant over discrete time intervals At, leading to time-varying power dissipation. The

magnetic field is therefore expressed as:



((H, te€][0,At)
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The goal of this work is to define and solve an optimization problem to determine the optimal design
parameters K = {Hi, Ho, ..., Hy}, such that the uncertainty in the recovered thermophysical
properties of the tumor and the magnetic anisotropy of the nanoparticle system is minimized based
on available temperature measurements. To quantify the system response, we define the total
signal G(IC,P) € R from the physics-based model as the temperature field u(t, x) integrated over
the spatial domain 2 and time:

G(K,P) = /Q/tu(t,x) dt dQ (12)

The dependence of G on both the design parameters K and the model parameters P arises from the
coupled physics described in Egs. (1)—(10). Note that this signal incorporates the full spatiotem-
poral evolution of the temperature field. In the optimization framework, we treat G(K,P) as the
observed data. Both the data and the model parameters P = {pc, k,w, K} are considered as ran-
dom variables. We then define the MI between the data and the model parameters and formulate
an optimization problem to maximize the MI. This approach allows us to identify design parameters
KC that maximize the information gained about the uncertain model parameters from temperature
measurements.

Our data acquisition model, G(IC, P) : R* x R™ — R", maps deterministic acquisition parame-
ters, K € R*, and uncertain parameters, P € R™ to observables, 2 € R" ( or 27 € C"). Explicitly,
we will assume that the measurement models are corrupted by zero mean white noise of a known
covariance matrix, >, € R™*"

Z=G(K;P)+v  v~N(0,X,), (13)

where v may be interpreted as the measurement noise or the acquisition noise in the sensor model.
For a deterministic measurement model G, the conditional probability distribution has an explicit
analytical form and may be written as a known Gaussian distribution.

EIP) = NG P). 50 = e (—5110(6P) — 412, ) (14

Note that the noise, X,, is a property of the measurement and is fixed and independent from the
signal model G(KC; P). Additional known information is the prior probability distributions for the
model parameters, p(P). For simplicity, we assume that prior parameters are Gaussian distributed

A

with known mean, P and covariance, Yp

syt oo (L pp
P ~ N(P, 27)) = 2 7 det EP exp ( 2”7) PHZP) s (15)

within this Bayesian setting, Xp represents the model parameter variation. Bayes’s theorem is
fundamental to the approach. The probability of the measurements p(z) must be interpreted in
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terms of the known information. The probability of the measurements may be derived from the
marginalization of the joint probability and has the interpretation as the projection of the joint
probability onto the measurement axis.

p(z) = /7> p(P,2) dP = /P p(z|P) p(P) dP
Jo=lye i L S (16)
1 ~
= C/ dP exp (—5 (IlgUc: Py — 213, + 1P —P\iép)) )
P

2.4.1. MI calculation

We aim to identify measurement data that maximize the reliability of parameter estimates by
significantly reducing uncertainty. According to information theory [28], this reduction is char-
acterized by MI, which measures the amount of information gained about one variable through
knowledge of another. MI has been extensively applied in various domains, such as image registra-
tion [39], optimizing sensor placement[40], sensor management [41], and parameter estimation [42].
We assume Gaussian distributions for the prior and likelihood, and the MI optimization reduces to
entropy maximization.

max [ (P; z) = max H(z),
KeF KeF

Calculating M1 is a computationally intensive task due to the high-dimensional integration expressed
in Eq. (17), needed across both parameter and data spaces. Various methods have been developed
to perform these calculations, each demonstrating strengths that depend on the specific function
involved. These methods encompass Monte Carlo and Quasi-Monte Carlo approaches[43, 44], lattice
rules[45], adaptive subdivisions[46], neural network approximations[47|, and numerical quadrature
techniques[48]. In this work, Gauss-Hermite quadrature[49] is employed in each dimension of the MI
integrals defined in Eq. (17) to perform numerical integration over multivariate Gaussian random
variables (see Appendix Appendix A).

Nout

HG) == [po)npe)ds ~ 5= 3 lnpz),

8 //Hp A P)p(P)In (/ Zj|p)dp> APz, (17)
. 1

Ma»—/p@m@WMﬁ

(2i31D05),

where the P; are drawn from the prior p(P); z; are drawn from the conditional distribution p(z;|P;)
(i.e., the likelihood), and N is the number of samples.

2.5. Monte Carlo integration of MI

Monte Carlo integration provides an independent numerical strategy to verify the results of
experimental design optimization. The approach begins with the integral expression for the expec-
tation of a function of a random Variable For a random variable X and a function f(X), the expec-
tation is given by Ex|[f fﬂ x)dx [43]. The entropy integral may thus be represented
as an expectation, followmg this, the entropy can be written as H(z) = Ez[In(p(2))]. This will allow
the use of Monte Carlo methods to approximate the integral numerically as H(z) ~ Nout > In(p(z)),
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where z; are samples from the marginal distribution p(z). However, it is not possible to directly
calculate p(z;) because it is constructed as a marginal distribution, as in Eq. (16).To address this,
we use a nested Monte Carlo for estimating p(z;) for given z;. Using the Monte Carlo numerical
decomposition, we can express p(z;) (i.e. the probability of some realization z;) as the expectation
integral p(z;) = Ep[p(z0|P)]. We can also estimate this quantity via a Monte Carlo method via
sampling from po(P) directly. This yields p(z;) = [, p(2:i|P)po(P)dP = NLW > (20|p;) with each p;
drawn from po(P). The probability p(z|P) is directly calculated from Eq. (14). Given this ability
to evaluate p(zp) for individual realizations zy, the full differential entropy expression H(z) is thus
the average negative logarithm of the probabilities of realizations p(z;). The individual probabilities
p(z;) are generated at the highest level, using a large number of realizations z; from the distribution
p(2). Bach realization z; is generated first by sampling from z; ~ [, p(2|P)p(P)dP. For realization
z;, we then use the Monte Carlo process described above, which involves the average of p(z;|p;) with
p; according to samples from po(P). The full Monte Carlo integration expression for the entropy is

thus
HG) = [ o) ~ - (5 Sptaln)) )

out .
7

Importantly, N,,; and N;, emerge as parameters required to control the convergence rate of the
approximation. For known quantities, setting both to 10% yields an average error of approximately
5% for known mutual entropy calculations involving known K. This is considered sufficient for
benchmarking the performance of the integrations[50], and the results presented below assume
these parameter settings.

3. Results

The concentric spherical geometry of the tumor and surrounding skin is depicted in Figure 1(a),
providing a 3D representation of the spatial domain. The surrogate 1D model, shown in Figure 1(b),
simplifies this geometry while maintaining geometric similarity and key thermal characteristics, thus
enabling faster computations without compromising solution accuracy. This reduced dimensionality
facilitates a more efficient optimization process by significantly reducing the requirements for com-
putational resources. Figure 1(c) presents the temporal evolution of the the temperature at three
critical locations: center of the tumor, the edge of the tumor and the surface of the skin. Solid lines
represent the results of the 1D surrogate model, while markers illustrate the predictions of the 3D
model. The close agreement between the surrogate model and the full 3D model demonstrates the
surrogate’s ability to capture the thermal behavior accurately. Specifically, the temperature curves
from both models overlap at all time points, suggesting that the 1D surrogate model preserves
essential features of heat transfer dynamics in the system. Figure 1(d) further compares the radial
temperature profiles at multiple time points (0, 60, 120, and 1800 seconds). The results highlight
the consistency between the predictions of the 1D and 3D models, with the surrogate model repli-
cating the spatial temperature distribution observed in the full model. This indicates the surrogate
model’s ability to effectively approximate the spatial temperature distribution, at all treatment
times and radial positions. The full 3D model required approximately nine minutes for a simulation
spanning 1800 seconds, as computed using the COMSOL Multiphysics package, while the same
simulation was completed in just 1.2 seconds using a simplified 1D model. The comparative results
clearly illustrate that the surrogate 1D model is an efficient and accurate alternative to the com-
putationally intensive 3D model. This makes the 1D surrogate model appealing for optimization
procedures where repeated forward model evaluations are necessary. As described in section 2.4,
multivariate Gaussian is taken as a prior for uncertain model parameters P = {pc, k,w, K}, The
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Figure 1: Computational Geometry and Comparison of Full and Surrogate Model Solutions. (a) The model consists
of a three-dimensional concentric spherical geometry, where the tumor is surrounded by a skin layer, representing
thermal behavior during treatment. (b) A one-dimensional surrogate model simplifies the 3D geometry, assuming
symmetry at r = 0 and a convective boundary at the outer surface, ensuring computational efficiency while preserving
thermal characteristics. (c) A comparison between the full 3D COMSOL model (markers) and the 1D MATLAB
surrogate model (solid lines) shows strong agreement in temperature profiles at the tumor center, boundary, and outer
surface, with steady-state reached after 600 seconds. (d) Radial temperature variation over time reveals progressive
heating from MNPs, demonstrating the surrogate model’s ability to capture key thermal dynamics while reducing
computational complexity.

model parameters with the known mean and variance are as follows.

Density and Specific Heat product: pc = N(3589229.92, 417740.68) J/(m?* - K)
Thermal Conductivity: & = N(0.492,0.076) W/(m - K)
Blood Perfusion Rate: w = N(0.00682,0.00387)s™*
Magnetic anisotropy constant: K = N(31500.00,4725.00) J /m®

All quadrature points in the third-order Gauss-Hermite quadrature approximation for numerical
integration were positive with the chosen mean and variance. The other model parameters were set
as specified in Table 1. The bounds for the design variable K were chosen to be [0, 50,000] A/m.
We have tried multiple initial guesses to arrive at the optimized value for K. We have considered
two cases for optimizing the design variable, as listed below.

1. One uncertain parameter optimization. In this case, the thermophysical properties of the tissue
were assumed to be constant and fixed at the mean value. This results in the optimization
problem of finding KU that minimizes the uncertainty in the magnetic anisotropy constant of
the nanoparticles.

2. Four uncertain parameters optimization. In this case, all four model parameters are considered
uncertain, and the optimization problem is to find X with minimum uncertainty when these
parameters are simultaneously recovered from the experimental measurements.
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We initialized the optimization problem with fixed parameters for both cases and tested various
initial guesses for the magnetic field amplitude (H) within the range of [0, 40,000] A/m. The first
six initial guesses were spaced evenly, with a step size of 8,000 A/m. Additionally, we explored two
more cases: one with a randomly varying A and another with an oscillating H between 0 and 7,600
A/m, as described in [51]. These diverse initial conditions were used to evaluate the robustness of
the optimization algorithm in converging to optimal solutions. Figure 2 and Figure 3 illustrate
the results of an optimization problem designed to determine the optimal values of K for cases
1 and 2, respectively. In Figure 2, results from Case 1 are presented, where only the magnetic
anisotropy constant (K) is treated as an uncertain parameter. The optimization algorithm aimed to
maximize the MI between the data G(K, P) and the model parameters P. The optimizer consistently
converges to stable and positive magnetic field amplitudes (H) near the maximum allowable value
for all nonzero initial guesses. This demonstrates the robustness and efficiency of the optimization
process in refining initial guesses to achieve optimal solutions. However, the optimizer fails to
identify and refine a solution when the initial guesses are set to zero, as shown in panel a, and
for nonzero initial guesses in d and f. This failure suggests that the algorithm requires nonzero
starting points to initiate the optimization process effectively. Interestingly, when the nonzero
initial guesses are slightly perturbed by a small fluctuation of 10 A /m, the optimizer can refine these
values and successfully converge to the optimal magnetic field amplitudes identical to the observed
values in panels b, ¢, and e, where the optimization consistently achieves stable and maximum
amplitude solutions. These findings highlight the importance of appropriate initial conditions and
the sensitivity of the optimization process to minor perturbations in the input values. In Figure 3,
the results for Case 2, where all model parameters are treated as uncertain parameters, illustrate the
optimization framework’s ability to handle increased complexity and uncertainty. Sub-panels (a)-(f)
show the algorithm’s effectiveness in refining evenly spaced initial guesses, consistently converging
to stable solutions near the maximum allowable field amplitude for all nonzero initial guesses.
Sub-panel (g) highlights the framework’s robustness in dealing with randomly varying magnetic
field amplitudes, successfully converging to consistent optimized values. Similarly, sub-panel (h)
demonstrates the algorithm’s adaptability to oscillatory inputs, effectively refining these complex
initial conditions to achieve optimal solutions. These results confirm the framework’s ability to
address diverse scenarios, enabling the design of robust experimental protocols under conditions of
high uncertainty.

The optimal values obtained using the quadrature integration method are verified through Monte
Carlo integration, as illustrated in Figure 4. The figure presents the distribution of cost function
values computed for 500 samples using both random and optimal design parameters. A clear sepa-
ration is observed between the cost values corresponding to the random and optimal parameters for
both the one and four uncertain parameter cases. Notably, the cost function values are consistently
higher for the optimal parameters, indicating higher entropy. These results confirm the correct-
ness of the optimal parameters identified through the information-theoretic optimization based on
quadrature integration.

4. Discussion

The results demonstrate the effectiveness of the proposed optimization framework in determin-
ing optimal design parameters K for reducing uncertainty in model parameters. The convergence
to stable and positive optimized values for widely varying initial guesses indicates that the MI
framework is robust and reliable for optimization problems. This suggests that the optimization
algorithm is well suited for simplifying the design process with uncertain model parameters. In
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Figure 2: Optimization results for Case 1, where only K is treated as a random variable. The plots compare the
initial guesses (red solid lines) with the optimized magnetic field amplitudes (H, blue circles) across various scenarios.
The initial guesses include evenly spaced values (0,8,000,...,40,000 A/m) (sub-panels a-f), a randomly varying H
(g), and an oscillating H between 0 and 7,600 A/m (h). The optimizer consistently converges to stable and positive
H values near the maximum allowable amplitude for all nonzero initial guesses. However, the optimizer fails to refine
the solution for initial guesses in panels a, d, and f. When these values are perturbed by a small fluctuation of 10
A /m, the optimizer successfully converges to optimal values, similar to the results observed in panels b, ¢, and e.
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Figure 3: Optimization results for Case 2, where all model parameters are treated as random variables. The plots
compare initial guess (red solid lines) with optimized magnetic field amplitudes (H, blue circles) for evenly spaced
values (0,8,000,. ..,40,000 A/m) (sub-panels a-f), a randomly varying H (g), and an oscillating H between 0 and

7,600 A/m (h). The optimizer refined the solutions and found optimal values other than the given initial condition
for all the initial guesses except a zero initial guess.

most cases, the clear difference between initial guesses and optimized values highlights the ability
of a MI-based approach to guide the optimization process. By leveraging MI, the model ensures
that the design parameters provide maximal information about the uncertain parameters, enabling
more accurate and reliable parameter estimation from temperature measurements. The applica-
tion of MI theory to identify optimal experimental parameters has been validated in our previous
studies [49, 52, 53]. For example, Jha et al. [49] demonstrated computationally how information
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Figure 4: We plot the difference in cost function between random and optimal points using box plots. The left panel
demonstrates the distribution of values for the MI for one uncertain parameter, while the right panel demonstrates
four uncertain variables. Both sets of plots are the cost function associated with H(z|K). The blue plots are the cost
distribution for 500 random experimental parameter realizations, uniformly distributed and computed via the Monte
Carlo integration technique. The red plots are the distribution of optimal cost values at the optimally computed
points. The separation between random and optimal costs helps verify the utility of the optimization, and the
independent calculation method further verifies the main result.

theory-based optimization could effectively identify image acquisition parameters for recovering the
pyruvate-to-lactate exchange rate. Similarly, Madankan et al. [52] validated the use of MI for select-
ing optimal k-space locations in MRI, using phantom acquisitions as proof of concept. Mitchell et
al. [53] extended this work by optimizing MRI acquisition parameters for 3D quantification with an
interleaved Look-Locker sequence (3D-QALAS), validated using both mathematical phantoms and
in-vivo human brain imaging. These studies collectively highlight the robustness and versatility of
information theory-based approaches in optimizing experimental conditions across a wide range of
applications. Based on this established foundation, we did not explicitly validate our optimized pa-
rameters in this study with the experiments. However, we used Monte Carlo integration techniques
to verify our results, which strongly support the validity of our approach. Future work will involve
validating the framework through both experimental and computational approaches, including in-
vivo and in-silico studies. Planned in-vivo experiments will utilize mouse models with breast and
prostate cancer cell lines to conduct hyperthermia treatments. During these experiments, tempera-
ture measurements will be taken under both random and optimized magnetic field conditions. The
recorded temperature data, reflecting uncertainties in model parameters, will serve as the observed
dataset. By integrating the model with the measured temperature data, the parameters of interest
will be recovered, and the associated uncertainties will be systematically evaluated. Additionally,
a computational validation approach will be employed, where synthetic data, such as temperature
profiles, will be generated using the model under controlled noise conditions. This synthetic data
will then be used to evaluate the recovery accuracy of the parameters of interest. These efforts
will comprehensively test the framework’s efficacy and pave the way for real-world applications. A
limitation of this study is the theoretical nature of the data acquisition model coming from the
solution of PBHE. However, the bioheat transfer model and the magnetic particle heat generation
theory have been widely used in various studies [36, 38, 54, 55] to model magnetic nanoparticle
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hyperthermia. These studies strongly agreed with the experimental data when parameterized with
physically realistic values. Therefore, the findings presented in this work can provide valuable
insights for designing and optimizing future experiments. This work uses a Gaussian prior to han-
dle the uncertainty in thermophysical tissue characteristics and the anisotropic energy constant of
nanoparticles. The study may produce a more reliable evaluation of the stability of the findings
using more uncertain parameters. Furthermore, investigating different prior distributions, such as
uniform priors, could offer new perspectives. The computational architecture used in this study
relies on a quadrature method to evaluate MI integrals, which have intrinsic constraints. Adding
extra sources of uncertainty poses issues due to the ”curse of dimensionality”. To overcome this
issue, alternate integration approaches, such as Markov Chain Monte Carlo or nested sampling
methods for evaluating MI integrals, may provide more efficiency and scalability.

5. Conclusions

This study presents an information-theoretic framework for optimizing experimental conditions
in magnetic nanoparticle hyperthermia, addressing key challenges associated with uncertainties in
the thermophysical properties, nanoparticle distribution, and magnetic parameters. By incorporat-
ing mutual information as a metric during the proposed optimization approach, this study optimized
the magnetic field amplitude for better temperature measurements to improve the accuracy of pa-
rameter estimation. The results demonstrate the robustness of the optimization process in diverse
initial guesses, with consistent convergence to stable and meaningful solutions, even in scenarios with
multiple uncertain parameters. This framework provides a powerful tool for improving the planning
of magnetic nanoparticle hyperthermia treatment and highlights the potential of its integration into
clinical workflows to enhance the safety, efficacy, and predictability of hyperthermia-based cancer
therapies. Future work should focus on experimental validation and extend this approach to more
complex 3D geometries and real-time treatment monitoring.
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Appendix
Appendix A. Gauss Hermite Quadrature

1D Gauss-Hermite quadrature is of the form:

/_OO exp(—a2?) f(z)dz ~ sz’f(%i), wi=... (A1)

o0

- / / /pNprJ lp)dp = /ﬁlp@l) /mp@z) /ﬁNp@N)p(z\ﬁ)dﬁ (A2)

We can consider several probability models. First, consider a conditional probability model where
each time point and species is jointly independent:
p(2|P) = p(z1|P)p(22|P) . .. p(2u|P)
= N(Gi(K;P), 0. )N (G2 (K P),0.) ... N(Gu(K; P), 02)

17! 1 gi(’c?_P)—Zi>2 A3

_H\/Qﬁazexp< 2( o (43)
1 1, = .

— o (59U P - 218).

(V2mo,)?

Consider p(z):

Alternatively, we can consider the signal total sum as a scalar Gaussian variable:

p(2|P) = N(G(K;P),0.) = \/%a exp <—% (g(K70—7Z)_Z> ) (Ad)

P ~N(P,Sp) = H exp (_% (M)Za—;PZ) ) (A5)

V2o P

For each component:

1 Pi—ﬂP-)Z
Py, P2, Pi, Pn)dP; = — | —
[ PapteiPu Py _Wlexp< 2( -
X P(Z|731, P, Pi, Pn)dP;

1
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X \/_0'77 dx
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J
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Here, a change of variables is assumed:

Pi — Kp;

T = —,
V20p,

Continuing to the next variable:

P = \/50731.%’ + up,, dP; = \/§U7>Z.dx (A7)

1
/ p(Pk) Z wj—p(zlpl, Pk, ﬂapixj + up;, PN)de
P —~ VT
1
~ Zwl Z%’ﬁ XD (Z‘Ph V20p,11 + pip,, V20p,x; + MP“PN)
l J
By induction:
1
p(z) ~ Z Win Z Wiy Z Wiy Fp <Z|\/§07>11'j1 + ppy \/§0P2mj2 + py, \/§U7DN'IjN + :uPN> (Ag)
- - - T
IN J2 J1

Notice that the p(z) calculation is independent of whether the conditional probability p(z|P) is
Gaussian or Rician. The parameter prior p(P) is Gaussian in either case. Integration is with
respect to the parameter prior. Integration is linear:

/af(x) + bg(z) + ch(x)dx = a/f(x)dx + b/g(a;)da; + c/ h(x)dx (A10)
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