Celebrating the Life and Work of J. Tinsley Oden: A Pioneer and a
Mentor in Computational Mechanics

Predictive Science: A Quest for the Holy

Abani Patra, Tufts University, Medford, MA 02155, USA

Danial Faghihi, University at Buffalo, Buffalo, NY 14051, USA

Prashant K. Jha, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
Lianghao Cao, California Institute of Technology, Pasadena, CA 91125, USA

Kathryn A. Farrell-Maupin, Sandia National Laboratories, Albuquerque, NM 87123, USA

Abstract—The pioneering contributions of Dr. J. Tinsley Oden fundamentally
redefined predictive computational science, transforming it into a rigorous
discipline centered on making reliable predictions of complex physical systems.
This article attempts to articulate Dr. Oden’s vision and philosophy for scientific
prediction, emphasizing the development of computational models that do not
merely approximate some features but truly predict complex physical phenomena
and systems, spanning applications from cancer treatment to the behavior of
advanced nanomaterials. We highlight the core mathematical and statistical
foundations he advanced, including Bayesian frameworks for uncertainty
quantification, systematic methodologies for model validation, and adaptive
strategies for controlling prediction error and balancing model complexity against
predictive reliability. Finally, we discuss how Dr. Oden’s legacy has established a
new scientific paradigm of the science of prediction that continues to advance the
frontier of computational science and engineering, guiding future generations
toward the rigorous development of mathematical and computational models that
span everyday technologies to high-consequence decision-making in critical
systems.

by Dr. J. Tinsley Oden (JTO) as [15]: computational prediction under uncertainty and limited
information. In JTO’s vision, true scientific prediction
rested on integrating three pillars: observation (em-

The scientific discipline concerned with pirical data), theory (mathematical abstraction), and
assessing the predictability of computational science. The last provides a pathway to

mathematical and computational models knf)wlt.adge thr9ugh S{mulat.lc?n when direct experlmen
. . tation is infeasible or insufficient. JTO emphasized that
of events that occur in our physical . - .
) ) o computational predictions are only meaningful when
universe in the presence of uncertainties

) ] model use is rigorously validated—an ethos now widely
in all the factors that determine the adopted across the validation, verification, and un-

reliability and scientific significance of the certainty quantification (VVUQ) community [14], [19]-
prediction. ensuring that simulations are credible representations
of physical systems rather than mere numerical mim-
icking of some features of it. Central to his philosophy
was the recognition that “science is subject," that is, a
model’s validity must be context-dependent, reflecting

P redictive computational science was defined JTO’s thinking about a central paradigm in science —

In this short perspective article, we celebrate the arc of

XXXX-XXX © 2025 |EEE both the problem’s nature and the modeler’s informed
Digital Object Identifier 10.1109/XXX.0000.0000000 judgment about acceptable error and uncertainty to
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deem a model to be valid for making predictions.
JTO further advocated Bayesian inference as the only
logically consistent foundation for predictive science,
uniquely capable of unifying prior knowledge, empiri-
cal data, and model credibility into a systematic and
principled framework for scientific reasoning under un-
certainty.

Robust prediction is perhaps the oldest and most
significant problem society poses to the science and
engineering community, so we may plan and manage
our lives, assets, and resources for the best outcomes.
Let us attempt first a formal definition of prediction:

& is often expressed in the form of “mathematical con-
structs that describe a system and represent knowl-
edge of the system in a usable form" [15] or, as is more
popularly known, a mathematical model or governing
equations representing our knowledge often stated
as conservation laws, constitutive models, boundary
conditions and closures. Lack of complete knowledge
of the system and inherent randomness/stochasticity
are intrinsic to most physical systems and are often
characterized as the uncertainty associated with the
model. Of course, the complexity of £ implies that great
effort must be expended in deriving satisfactory com-
putational approximations £". Generally, the process
of prediction consists of the following steps:

Physical system — Model — Evaluation — Prediction

where transitioning from ‘Physical system’ to ‘Model’
involves observation and the application of engineering
principles, encoding key phenomena of interest into
mathematical relations. The model introduces specific
phenomenological parameters, which are assigned
fixed values (deterministic) or probability distributions
in the ‘Evaluation’ stage based on the available ob-
servation data. The model is also numerically approxi-
mated into a form that can be solved using computers.
Finally, in the ‘Prediction’ stage, the calibrated model
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is utilized to make predictions about physical events
while taking into account the model inadequacy, uncer-
tainty in the observational data, and model parameters.
While the steps appear to be linear and distinct, JTO
was among the first to make them iterative, driven by
mathematically rigorous estimates of error and uncer-
tainty in the model and its evaluation [17].

The following two sections highlight some method-
ologies developed by, or inspired by, JTO that form the
foundation of this transformative paradigm for modeling
and prediction across a broad spectrum of complex
physical systems and applications (see Figure 1 for
illustrative examples). In the final section, we discuss
how these fundamental principles continue to shape
the future of computational science, even as modeling
is undergoing a reinvention in the age of artificial intelli-
gence (Al). In addition to these technical perspectives,
we also include brief personal recollections from the
authors (noted by initials), offering insight into JTO’s
philosophy and mentorship.

This section outlines the statistical foundations of pre-
dictive science, focusing on uncertainty quantifica-
tion in computational models and observational data
within a Bayesian framework for model validation and
adaptive model selection. The presentation is largely
adapted from the seminal works of JTO [16], [15].

To systematically address uncertainties, we define
mathematical and computational models in an abstract
form as

A(0, S; u(6, S)) =0, (1)

where A represents a set of operators, 6 € © is model
parameter vector, and S denotes the scenario. The so-
lution u(@, S) € U is the solution of the forward problem
Equation 1, and the fundamental goal of solving this
model is to use these solutions to compute specific
quantities of interest (Qols) Q : U — R; Figure 2
describes different levels of evaluation, with prediction
being the ultimate goal.

Characterizing uncertainty in predictions
Scientific prediction inherently involves managing mul-
tiple sources of uncertainty throughout the prediction
process, including:

1) P uncertainty. This systemic uncertainty pertains
to selecting an appropriate mathematical frame-
work for quantifying uncertainty in a logically con-
sistent manner. It raises fundamental questions:
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Selection of Coarse-Grained Models for Molecular Dynamics
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lllustrative applications of computational model validation, selection, and uncertainty quantification in complex

physical systems. (Top left) Development of validated coarse-grained models for molecular dynamics simulations of polyethylene,
requiring model selection across various coarse-graining maps and corresponding intermolecular force fields [5]. (Top right) 3D
computational prediction of brain tumor (glioma) progression in a murine subject undergoing whole-brain radiotherapy of 40
Gy at t=14.5 days after tumor cell implantation. Data are obtained from longitudinal Magnetic Resonance Imaging (MRI) over
approximately three weeks. The most predictive model is selected from 39 distinct continuum mixture models describing tumor
growth and treatment response [10]. (Bottom left) Prediction of nano-pattern formation of self-assembled diblock copolymer
materials using nonlocal Cahn-Hilliard phase field models and microscopy imaging data of the materials [4]. (Bottom right)
Residual-based error correction for neural operators, based on the estimation of modeling error using the residual of the partial

differential equation (PDE) [8].

Should predictions be formulated using probabil-
ity theory (and if so, which variant?), possibility
theory, fuzzy sets, Dempster—Shafer theory, or
interval analysis? Which framework ensures in-
ternal consistency in uncertainty quantification?
In [15], JTO argued that within the Cox-Jaynes
probability framework, P uncertainty does not
exist, as any logical extension of Aristotelian rea-
soning under uncertainty is inherently Bayesian.

2) Y uncertainty. Represents uncertainty in obser-
vational data, arising from experimental noise,
spatiotemporal sparsity, and aleatoric variability
in high-fidelity simulation data.

3) M uncertainty. Relates to model selection, an
often overlooked yet critical source of uncertainty.

4) 0 uncertainty. Captures uncertainty in parameter
values or parametric distributions, a fundamental
factor in predictive modeling.

5) h uncertainty. Arises from numerical discretiza-
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tion (e.g., finite element, finite difference) in com-
putational models. It pertains to model verifica-
tion, involving solution verification (a-posteriori
error estimation).

We now examine ) and 6 uncertainties in a
Bayesian framework, address M uncertainty and h
uncertainty in the next subsections. Given uncertain
data (observations) Y, Bayes’ rule, expressed in terms
of the probability distribution function (PDF) =, yields

Tiike(Y|0, S)Tprior(8]S)

V1) @

ﬂ'post(0| Y, S) =

where mpior(0|S) is the prior PDF of model parameters,
mike( Y10, S) is the likelihood, mpost(8]Y, S) is the poste-
rior PDF, and Wevid(Y‘S) = fe 7r|ike(Y|0, S)wp,ior(G\S)dG
is the evidence is the marginalization of the numerator
to make sure [ mpost(0|Y, S)d6 = 1.
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FIGURE 2. Bayesian prediction pyramid comprising three
stages: calibration, validation, and prediction. The model is
first calibrated using data Y. collected under the calibration
scenario Sg, which is designed to evaluate the model's sub-
components. It is then validated using data Y, from the val-
idation scenario Sy, which involves more complex conditions
than calibration. Finally, the calibrated and validated model
is used to predict quantities of interest under the prediction
scenario Sp, where data collection is expensive or impossible
[15].

Maximum entropy prior.

A rigorous approach for prior construction leverages
Shannon’s principle of maximum entropy, which pro-
vides a systematic framework when statistical infor-
mation about parameters is available. This principle
states that uncertainty can be encoded via entropy;
for continuous variables one maximizes relative en-
tropy H(p||m) = —[ p(x)log(p(x)/m(x)) dx with re-
spect to a chosen base measure m, subject to known
constraints. Among a class of candidate densities,
the most noncommittal distribution is the one that
maximizes H(p) while satisfying known constraints
(e.g., specified moments such as mean and variance).
Jaynes [6] introduced this concept for constructing
meaningful priors.

Noise model for constructing likelihood.

Incorporating ) and @ uncertainties in parameter in-
ference depends on modeling data noise e with a
probability distribution pgata(€) and model inadequacy
~(8, S) with pmogel(€). Under an additive noise assump-
tion, where the imperfect data and imperfect model are
modeled as additive error to reality, it follows that (see
[16] for details):

€e+~(0,S) =Y —u(,>S). (3)
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Thus, the likelihood of observing data Y given 6 is
Tike (Y10, S) = peomp(Y — u(8, S)), 4)

where pecomp denotes the probability of total error,
combining assumptions on data noise pgata(€) (typically
Gaussian) and model inadequacy pmodei(€) (s€€, €.g.,
[11] for various model inadequacy assumptions).

Scenario.

The term scenario refers to both the computational
domain where the model is solved and the physical
environment where experimental data are collected.
For model validation, particularly when predicting un-
observable Qols, it is useful to establish a hierarchical
structure as represented in the prediction pyramid in
Figure 2:

e Calibration Scenarios (S;): Initial parameter tun-
ing using calibration data Yg;

e Validation Scenarios (Sy): Assessing the
model’s prediction ability and determining its
validity using the validation data Y; and

e Prediction Scenarios (Sp): Solving the forward
problem Equation 1 to predict Qols in the full
system.

K.F.M. recalls that JTO would sometimes
refer to Figure 2 as a “prediction
tetrahedron,” noting that the back side,
which cannot be seen, is the true value of
Qol in each scenario.

Occam Plausibility Algorithm: Adaptive
selection and model validation

Addressing M-uncertainty is one of the most chal-
lenging aspects of model validation and uncertainty
quantification, and JTO’s contributions in this area
have had a lasting impact across diverse modeling
problems. A key advancement was the Occam Plau-
sibility Algorithm (OPAL), introduced in Farrell et al.
[5]. OPAL provides a systematic, adaptive framework
for model calibration and validation, integrating multi-
ple uncertainty-quantification methodologies. Inspired
by Occam’s Razor, which favors the simplest model
among those yielding equivalent predictions, OPAL
defines the “pbest” predictive model as the simplest
model that passes the model validation criteria.

K.F.M., then a PhD student working on
the selection and uncertainty
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quantification of coarse-grained atomistic
models, and D.F., a postdoc at the time,
recall the daily meetings JTO held to
tackle the challenging problem of
navigating numerous potential models
(e.g., varying degrees of coarse-graining
and choices of interatomic potentials). He
met with them in a small conference
room next to his office early each
morning and sometimes again in the late
afternoon, even during the ice storms that
shut down Austin, TX, in January 2014.
They remember his insistence on a deep
understanding of the surrounding
literature on coarse-graining, global
sensitivity analysis, and model
plausibility: he would buy books, print
papers, and read and mark them
overnight so that by the next morning he
could drive the discussion further. Under
his guidance, what began as an
intractable attempt to examine every
model gradually evolved into the adaptive
strategy that became OPAL: eliminating
implausible models while embedding
validation under uncertainty as the
criterion for predictive acceptance. K.F.M.
notes that the discussions with JTO in
developing OPAL shaped her core beliefs
as a computational scientist and underlie
all the work that she has done since.

JTO later broadened OPALs scope in a chapter
of the Encyclopedia of Computational Mechanics [16],
co-authored with Ivo Babuska and D.F, extending its
foundations to include both deterministic and Bayesian
perspectives with examples in structural mechanics.
He subsequently applied OPAL to identify valid models
of tumor growth and radiotherapy in subject-specific
glioma [10].

D.F. recalls that in preparing the
encyclopedia chapter, JTO’s leadership
was evident: he listened carefully to his
co-authors’ ideas but consistently steered
decisions toward his core beliefs—for
example, on objective versus subjective
priors and measures of model complexity.

Month 2025

Bayesian model plausibility. Various approaches exist
for model comparison, but the gold standard relies on
Bayesian posterior model plausibilities, which weigh
the evidence PDF supporting each model. The re-
vival of model plausibilities in the works of James
L. Beck [1] drew JTO’s attention, particularly for its
implications in uncertainty quantification. The develop-
ment of accurate sampling techniques for computing
model evidence in complex computational models by
Ernesto E. Prudencio [21], [22] further reinforced JTO’s
interest in this area. Notably, although JTO only later
became aware of David J. C. MacKay’s seminal work
[12] on exploiting evidence PDF in Bayesian neural
networks, the conceptual alignment between their ap-
proaches to model selection—despite JTO’s focus on
physics-based modeling and MacKey’s on data-driven
techniqgues—underscores a broader convergence in
Bayesian inference methodologies.

This section outlines the fundamental concept of
posterior model plausibilities, which form the system-
atic basis for model selection within the OPAL frame-
work. Let M = {P4(01), -+ ,Pm(0@m)} denote a set of
m models P; with parameters 6,. The evidence PDF in
Equation 2, representing the probability of observing
data given the choice of model, is expressed as

mevid(Y|Pj, M, S) =
/ Tike( Y18, i, M, S)morior 6|71, M, S)dl6,
€]
j=1,,m. (5

This evidence serves as the likelihood in a second-
level Bayesian inference, leading to the posterior model
plausibilities:

pj = Wpost(Pj| Y. M,S) =
7T|ike(Y|73j, M, S)7"'prior(7)j|/\/ls S)
Tevid( Y| M, S) ’

The model (or models) in M with plausibilities p;
closest to unity (Zj pj = 1) are considered the most
plausible for given Y and S.

As JTO recognized, a model P; may be the most
plausible within M but still fail to meet validation
criteria for reliable predictions, necessitating further
validation tests using problem-specific metrics and tol-
erances. Moreover, evaluating model plausibilities and
performing validation across a large model space is
computationally prohibitive, except when M consists
of only a few models. These challenges motivated the
development of OPAL to navigate model selection and
validation efficiently.

j=1,---,m. (6)
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L.C. recalls that JTO frequently
expressed his reservations about
Bayesian model averaging in
physics-based models, an approach to
handling M-uncertainty by weighting
predictions from multiple models. He
regarded it as a misguided attempt to
force consensus: “It’s like making an
important decision by a show of hands,"
he would say, “letting amateurs—models
that might be completely off—drown out
the one expert in the room who actually
knows the right answer."

Occam-Plausibility Algorithm (OPAL) strategy. OPAL
utilizes plausibility to search through the model space
efficiently and leverages a model validation test to
validate (or refute) its predictive abilities. The key steps
of OPAL, as shown in Figure 3, are as follows:

1) Initialization. Identify a set M of m possible
models for predicting the Qol.

2) Sensitivity Analysis. Conduct a global sensitiv-
ity analysis (e.g., Sobol indices, elementary ef-
fect) for each model class to eliminate insensitive
parameters, setting them to fixed values. This
yields a reduced model set M.

3) Occam Categories. Partition M based on model
complexity measures (e.g., number of parame-
ters), assigning the simplest models to Category
1, the next level of complexity to Category 2, and
so on. This yields subsets My, Ma,--- , M.

4) Calibration. Statistically calibrate all
models in Category 1 (M) using a
designated calibration scenario Sc. This

results in a set of calibrated models:
M ~ {P}(67),P5(03), -+ . Pr(0i)}, k<.

5) Plausibility. Compute Bayesian posterior plausi-
bilities p; for the calibrated models in M. The
most plausible model(s), denoted P/ (67), is the
one with the highest plausibility: p; > p;, 1 <
J< k.

6) Validation. Having identified the most plausible
model in Category 1, the next step is to assess
its validity. This is done by transitioning to the
validation scenario, where the model’s calibrated
parameters are updated using Bayesian statisti-
cal inversion. The forward problem is then solved
in S, to generate model predictions for com-
parison with experimental validation data Y. To
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determine whether the model is valid, we eval-
uate the agreement between model predictions
and validation data based on a predefined metric
and tolerance threshold. Let gy (y) represent the
probability density of the validation data, and let
mv(y,0"*) denote the model-generated density
approximating gv(y), obtained using the updated
posterior distributions in S,. Given an appropriate
distance measure d(-,-) and a validation toler-
ance ), the model is deemed valid if

d (qV! 71—V(Y! 0**)) < Yol (7)

7) lteration or Solution. If the model satisfies the
validation criterion (7), the parameters 0** are
used in the forward problem for the prediction
scenario Sp to compute the solution (u(6**, S))
and predict the Qol. If none of the Category 1
models is valid, the process returns to Step 3,
setting M = My, and the procedure is repeated
until a valid model is identified. The process ter-
minates upon identifying a model that meets the
validation criterion, even if other untested models
could yield lower error. If none of the models in
the original set M are valid, the candidate model
space must be expanded until a valid model is
found, if possible.

We note that while Bayesian calibration and model
selection have been explored in computational me-
chanics [2], [9], JTO’s program is distinguished by
embedding validation under uncertainty within a hi-
erarchy of scenarios and using model plausibility to
guide adaptive, complexity-ordered searches across
large model spaces, aiming at the particularly difficult
problem of extrapolative prediction of unobservable
Qols. Tan et al. [24] later extended OPAL by introduc-
ing a method for designing model-specific validation
scenarios S, (Step 6 of OPAL), specifically for pre-
dicting unobservable Qols. They proposed that for a
model to reliably extrapolate to a Qol, its validation data
must effectively inform the parameters critical for that
prediction while ensuring experimental feasibility. Their
approach computes global sensitivity in the prediction
scenario Sp with respect to the Qol and compares
it to the sensitivity of validation parameters to ob-
servables in S,. A validation experiment is deemed
effective when the sensitivity profiles for prediction and
validation align. Paquette et al. [20] further refined this
idea by using influence matrices from active subspace
methods to identify validation settings best aligned with
Sp. Nevertheless, while the OPAL strategy and valida-
tion under uncertainty provide a principled foundation
for predicting unobservable Qols, their implementation
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START
Identify a set of possible models

M= {P1(01)7 ey Pm(am)}

l

SENSITIVITY ANALYSIS
Eliminate models with parameters to
which the model output is insensitive

— models

Mis M ={P1(61),....,P(6)}, I<m

|

OCCAM STEP
Choose model(s) in lowest Occam
category

k<l

Identify new set of possible

M= {Pl(gl)v s 7Pm’(0m’)}

l

CALIBRATION STEP
Calibrate all models in M*

l M

Choose model(s) in next Occam category

C= (PLOY).... PLOD).

ITERATIVE OCCAM STEP

that also include parameters from
previously most plausible model

k=K <l

PLAUSIBILITY STEP
Compute plausibilities and identify
most plausible model P; such that

pi <pj, 1<i<k

l

VALIDATION STEP
Submit PJ to validation test

e Update parameters

e Compute observable

1

no yes

Is ”P]’f valid?

no——| Does 77; have the most parameters in M? |

yes

L. | Use updated parameters 87 in forward problem to predict Qol |

FIGURE 3. Flowchart for the Occam-Plausibility Algorithm (OPAL) [5].

can be computationally intensive. Depending on the
prediction purposes, this challenge can be mitigated
through frequentist methods or the use of surrogate
models.

One of the fundamental sources of uncertainty briefly
introduced in the previous section is the h-uncertainty
that arises from the numerical approximation of the
mathematical models. In JTO’s framework for valida-
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tion and uncertainty quantification, h-uncertainty is not
a peripheral concern, but a critical and quantifiable
component of the broader landscape of model-based
prediction. As he emphasized in his theoretical and
applied work, a-posteriori error estimation is a rigorous
and necessary means to measure and control this
discretization-induced uncertainty [15].

Within the broader VVUQ framework, h-uncertainty
plays a central role in the verification step: the pro-
cess by which we ensure that the numerical solution
approximates the mathematical model correctly. For
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a family of discretized operators Ay, where h repre-
sents mesh size, h-uncertainty quantifies the devia-
tion from the idealized continuous operator A. This
modeling perspective treats discretizations themselves
as a family of computational models. Accordingly, h-
uncertainty is an expression of modeling error given
by = = Q(u) — Q(uo), where u and ug are solutions
of two different models (or discretized models for two
different meshes). Estimates of = can be useful in
determining the optimal mesh that meets the specified
accuracy and involves strategically refining regions
based on Qol error estimates. This typically results in
a refined mesh that achieves the target Qol accuracy
at a lower computational cost compared to uniform
mesh refinement. JTO saw great potential in this area
and played a crucial and leading role in the devel-
opment of goal-oriented a-posteriori error estimates
for designing efficient finite element discretization of
PDE-based models. These contributions span solid
mechanics, fluid mechanics, phase-field models for
tumor growth, and multiscale methods. Going beyond,
JTO and Prudhomme in [18] realized the framework
of goal-oriented a-posteriori error estimates can also
be extended to a much broader class of problems
— comparing models of different fidelities, which then
leads to multiple possibilities, including model selection
based on modeling error, model misfit of a lower fidelity
model based on a higher fidelity model, calibration of
models with respect to a “true” model [8], and more
recently building correction to surrogate models (e.g.,
correcting neural operator predictions) [3].

To make the ideas precise, suppose
A(0, S; u(8)) = 0 represents the higher-fidelity problem
and Ay(0o, S; upg(0o)) = 0 represents the lower-fidelity
problem, possibly with different parameters (i.e.,
0 # 6y), with u and u, approximating the same state.
We also suppose that R(0, u;v) = 0 is the weak form
associated with A, where R is the residual, possibly
nonlinear in the first two arguments, and u € U and
v € V are trial and test functions in appropriate
function spaces, respectively. The goal-oriented
a-posteriori error estimates of = takes the form, [18],

= ="R(0, Uo; Py) + R(6, Ug;€0) + 1

_ _ (8)
~ R(0, Ug; py) + R(O, Ug; €0)

where r is the remainder term involving higher-order
Géateaux derivatives of .4 and Qol functional Q, p,
is the so-called dual/adjoint variable that solves the
following dual/adjoint problem associated with the
Ao(6o, S; Ug) = 0, and g9 = p— p, is the error between
adjoint solutions of higher and lower fidelity models.
We also let ey = U — up. The difficulty with the above
estimate and other versions of estimates in [18] is
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the dependence on errors ey and &y, which require
the knowledge of higher-fidelity solutions (ug, py). To
remedy this, [18] computes estimators (&, &o) of errors
(eo = u—ug, e = p—py,) using the two linear variational
boundary value problems:

Find &g s.t. — 6uR(Uo; €0, V) = R(Ug; V), Yv e V (9)

and

Find &y s.t. — 6uR(Uo; v, &) = 6uQ(Ug; Vo)

(10)
+0uR(Uo; V, py), VV € V,

where
duRo(Uo; Wo, Pg) = J@O 1" [Ro(Uo +1Wo; po)

—Ro(Uo; Po)]
duQ(Uo; wo) = J@O n~ " [Q(uo + nwo) — Q(uo)]

are the Gateuax derivatives. In the above, we suppress
the dependence of residual R on model parameters 6.
Combining, one can use the estimates of error, (&, o),
obtained by solving the linear problems in Equation 9
and Equation 10, together with the approximation of =
in Equation 8 to compute the estimates of the goal-
oriented error.

In [18], such an estimation technique was applied to
(i) comparing heterogeneous and homogenized elastic
materials and (ii) comparing versions of incompressible
Navier-Stokes and Stokes equations. Recently, [8] ap-
plied the above model misfit approach to calibrate the
higher-fidelity model given the knowledge of the lower-
fidelity model. Further extension of the work discussed
in the next section includes correcting neural operator
surrogates of PDE-based forward operators [3].

A.P. has great memories of working with
JTO and several other students/postdocs
in the '90s K. Bey, W. Wu, M. Ainsworth
and others where the notion of a
posteriori error estimates for finite
element models and their use in a
dynamic strategy to deliver “Optimal
numerical approximations"” led to the
current thinking on delivering certifiable
models. The language was often salty but
the rigor of thinking and writing incredible
and indelible in our minds. As others like
Ivo Babuska joined this conversation it
became clear that much more than better
finite element models were needed — an
early stage in the evolution of ideas that
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later shaped the conversations recounted
by D.F. and K.EM..

The fundamental principles of predictive science ad-
vanced by JTO—rigorous model adaptivity, goal-
oriented error estimation, model validation for purpose,
and uncertainty quantification—have evolved from best
practices into indispensable pillars of modern predic-
tive computational science. Remarkably, the method-
ologies he began advancing as early as the 1990s
are now widely embraced across the computational
science community. As digital twins and Al models
increasingly drive high-consequence decisions across
healthcare, climate, energy, manufacturing, and au-
tonomy, the demand for reliable computational predic-
tions is now critical. Forward-looking strategic national
reports, including Foundational Research Gaps and
Future Directions for Digital Twins [13] and the Al
for Science, Energy, and Security Report [25] explic-
ity emphasize the need to integrate robust valida-
tion, uncertainty quantification, and adaptive modeling
into next-generation computational frameworks. In this
evolving landscape, JTO’s early vision and rigorous
methodologies offer not just historical significance but
a critical foundation for developing trustworthy compu-
tational models that support rational decision-making
in complex and often life-critical environments. These
principles have been broadly taken up across vari-
ous engineering disciplines, informing today’s common
VVUQ practice.

JTO was among the first to conceptualize patient-
specific cancer treatment as a digital twin, integrat-
ing biomechanical tumor growth models with clinical
imaging to optimize individualized therapy planning,
e.g., [10]. He later emphasized that predictive and per-
sonalized digital twins must be grounded in validated
physics-based models with quantified uncertainties,
establishing a rigorous framework for dynamic model
selection and adaptive UQ in real-time monitoring
of physical systems [21]. These foundational contri-
butions continue to guide the development of next-
generation digital twins for safety-critical applications,
ranging from regulatory science in evaluating medical
devices to real-time decision support in autonomous
systems.

On the other hand, the rapid integration of Al into
scientific discovery and technological innovation has
exposed a critical gap: the lack of built-in mecha-
nisms for error control and systematic frameworks for
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quantifying uncertainty and assessing the reliability of
model predictions. In this context, JTO’s foundational
contributions offer an indispensable scientific approach
for constructing trustworthy Al models. Particularly, his
legacy in goal-oriented a-posteriori error estimation is
poised to reshape how we assess the inadequacy
and improve predictive ability in Al models. The re-
cent extension of error estimation to neural operator
surrogate models [3], [7], demonstrating that residual-
based corrector frameworks can enhance accuracy
and reliability through variational analysis of the gov-
erning PDEs. When coupled with infinite-dimensional
Bayesian inference, these techniques further reduce
approximation bias [3]. Equally transformative is the
extension of JTO’s methodologies to uncertainty quan-
tification and model validation for Al models, in the
same way they guide physics-based model selection.
For example, OPAL has been recently extended to
discover Bayesian neural network models that explicitly
confront multifaceted sources of uncertainty, including
data sparsity, aleatoric variability, numerical conver-
gence errors, and architecture selection [23].

P.K.J. learned topics in uncertainty
quantification, model error, and
goal-oriented a posteriori error estimates
from JTO, who also encouraged him to
explore their connections to emerging Al
and machine learning methods. His
intellectual curiosity was extraordinary; he
was always eager to explore new areas.
P.K.J. vividly recalls JTO preparing
handwritten notes on deep learning,
starting from the fundamentals of
feed-forward neural networks and
backpropagation. At the same time, JTO
maintained a healthy skepticism toward
the way machine learning was often
applied in engineering contexts. He felt
that much of the research lacked a
rigorous foundation and was, at times, ad
hoc. His approach was always to ground
new methods in solid mathematical and
physical principles. While working
together on multiphysics modeling of
tumor growth, PK.J. gained a new
perspective from JTO on balancing model
complexity with the practical challenges
of calibration and validation. JTO often
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emphasized that a model too simple to
capture essential physics has limited
predictive value, whereas an overly

for neural operator accelerated infinite-dimensional
bayesian inverse problems. Journal of Computational
Physics, page 112104, 2023.

complex model with numerous 4. L. Cao, K. Wu, J T Ode'n, P Chen, 'and O. Ghat-
parameters can be challenging to tas. Bf';lye.smn model callbratlorl for diblock copoly-
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calibrate and validate, leading to _ . .
_ . s . . of microscopy data and machine learning surrogate.
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. . omputer Methods in Applied Mechanics and Engi
philosophy was to find a thoughtful neering, 417:116349, 2023. A Special Issue in Honor
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immensely from working closely with JTO tems. Journal of Computational Physics, 295:189—
between 2019 and 2023 and feels deeply 208, 2015.
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